
Audit Report

Tue Sep 10 2024

contact@bitslab.xyz https://twitter.com/scalebit_

ICKB

https://twitter.com/scalebit_
https://www.scalebit.xyz/


ICKB Audit Report

1 Executive Summary

1.1 Project Information

Description The inflation-protected CKB (iCKB) is a Nervos L1 xUDT token
responsible for protecting users against Nervos secondary
issuance inflation like NervosDAO, while at the same time
being a liquid asset.

Type Token

Auditors ScaleBit

Timeline Tue Sep 03 2024 - Tue Sep 10 2024

Languages Rust

Platform CKB

Methods Dependency Check, Static Analysis, Manual Review

Source Code https://github.com/ickb/v1-core

Commits 454cfa966052a621c4e8b67001718c29ee8191a2

1/13

https://github.com/ickb/v1-core
https://github.com/ickb/v1-core/tree/454cfa966052a621c4e8b67001718c29ee8191a2


1.2 Files in Scope

The following are the directories of the original reviewed files.

Directory

https://github.com/ickb/v1-core/scripts

https://github.com/ickb/v1-core/scripts/contracts

https://github.com/ickb/v1-core/scripts/contracts/utils

https://github.com/ickb/v1-core/scripts/contracts/ickb_logic

https://github.com/ickb/v1-core/scripts/contracts/owned_owner

https://github.com/ickb/v1-core/scripts/contracts/limit_order

2/13



1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 1 2

Informational 2 1 1

Minor 1 0 1

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

3/13



1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Integer overflow/underflow

Infinite Loop

Infinite Recursion

Race Condition

Traditional Web Vulnerabilities

Memory Exhaustion Attack

Disk Space Exhaustion Attack

Side-channel Attack

Denial of Service

Replay Attacks

Double-spending Attack

Eclipse Attack

Sybil Attack

Eavesdropping Attack

Business Logic Issues

Contract Virtual Machine Vulnerabilities

Coding Style Issues

4/13



1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis", and
"Manual Review" to conduct a comprehensive security test on the code in a manner
closest to real attacks. The main entry points and scope of the security testing are specified
in the "Files in Scope", which can be expanded beyond the scope according to actual testing
needs. The main types of this security audit include:

(1) Dependency Check

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

(2) Automated Static Code Analysis

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

(3) Manual Review

The scope of the code is explained in section 1.2.

(4) Audit Process

Clarify the scope, objectives, and key requirements of the audit.

Collect related materials such as software documentation, architecture diagrams, and

lists of dependency libraries to provide background information for the audit.

Use automated tools to generate a list of the software's dependency libraries and

employ professional tools to scan these libraries for security vulnerabilities, identifying

outdated or known vulnerable dependencies.

Select and configure automated static analysis tools suitable for the project, perform

automated scans to identify security vulnerabilities, non-standard coding, and

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

Design a series of fuzz testing cases aimed at testing the software's ability to handle

exceptional data inputs. Analyze the issues found during the testing to determine the

defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code

review plan, identifying the focus of the review. Experienced auditors perform line-by-

5/13



line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a

timely manner. The code owners should actively cooperate (this may include providing

the latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely

manner for both the audit team and the code owner.

6/13



2 Summary

This report has been commissioned by iCKB with the objective of identifying any potential
issues and vulnerabilities within the source code of the ICKB repository, as well as in the
repository dependencies that are not part of an officially recognized library. In this audit, we
have employed the following techniques to identify potential vulnerabilities and security
issues:

(1) Dependency Check

A comprehensive analysis of the software’s dependency libraries was conducted using the
dependency check tool.

(2) Automated Static Code Analysis

The code quality was examined using a code scanner.

(3) Manual Code Review

The primary focus of the manual code review was:

https://github.com/ickb/v1-core

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

ENT-1 Busywork Attack Informational Acknowledged

UTI-1 Handling of LengthNotEnough
Error

Informational Fixed

ENT1-1 Confusion attack on Limit Order Minor Acknowledged

7/13

https://github.com/ickb/v1-core/tree/master/scripts


3 Participant Process

Here are the relevant actors with their respective abilities within the ICKB repository :
iCKB is a protocol designed to address the illiquidity issue associated with NervosDAO by
tokenizing NervosDAO deposits into a liquid iCKB token. The iCKB protocol holds all iCKB
deposits and maintains a pool of these deposits, enabling anyone to use anyone else's
deposit to exit the NervosDAO once it's mature.
The exchange rate between iCKB and CKB is structured to be deterministic, tracking the
inflation rate from CKB secondary issuance as defined by the NervosDAO compensation
formula. The iCKB protocol encourages a standard deposit size of 100,000 iCKB to enhance
deposit fungibility and mitigate certain types of attacks.
Furthermore, a limit order script is implemented to address the constraints of the
underlying NervosDAO and iCKB protocols, facilitating a more flexible and user-friendly
experience within the iCKB ecosystem.

8/13



4 Findings

ENT-1 Busywork Attack

Severity: Informational

Discovery Methods:

Status: Acknowledged

Code Location:

scripts/contracts/ickb_logic/src/entry.rs#21-37

Descriptions:

Assuming that the user has a large corpus, he can consume all those whose maturity is near

(within one hour/few days) depending on how big is his capital. Depending on the amount of

capital used for the attack, this could reduce the quality of the service for everyone, as the

only remaining deposits would be those whose maturity date is a bit more far away, so this

could hamper the protocol fruition.

Suggestion:

This issue may be associated with the design idea of the protocol. Provided that the iCKB

pool is sufficiently large, the potential impact of such an attack will be significantly reduced,

while the cost of executing the attack will increase. Consequently, this type of attack is not

considered to pose a substantial threat. However, due to the absence of effective remedies

to fix it effectively, it counts as a security issue raised. This issue has already been discussed

with the project team at GitHub issue

9/13

https://github.com/ickb/proposal/issues/8


UTI-1 Handling of LengthNotEnough Error

Severity: Informational

Discovery Methods: Manual Review

Status: Fixed

Code Location:

scripts/contracts/utils/src/utils.rs#41,57;

scripts/contracts/ickb_logic/src/utils.rs#21

Descriptions:

It seems that the LengthNotEnough error is not being handled in a specific way. While this

approach might be valid in certain contexts, it could potentially allow incomplete data to be

treated as valid without additional checks.

Suggestion:

This issue has already been discussed with the project team at GitHub issue.

10/13

https://github.com/ickb/v1-core/issues/14


ENT1-1 Confusion attack on Limit Order

Severity: Minor

Discovery Methods:

Status: Acknowledged

Code Location:

scripts/contracts/limit_order/src/entry.rs#1

Descriptions:

Due to the architectural design of Nervos L1, output locks are not executed during the

transaction validation process. Consequently, an attacker may create a limit order that

shares the same master cell as an already existing limit order. This situation may lead to

confusion for the user regarding the identification of their actual limit order. Users must

exercise particular caution when melting their limit order and master cell, as selecting the

incorrect limit order could result in the permanent locking of the funds associated with their

original limit order.

Suggestion:

Such problems can be solved from the front end by querying to track every preceding

transaction for all limit order cells until the original transaction is found to see if it is in the

same transaction as the master cell.This issue has already been discussed with the project

team in the dedicated GitHub issue.

11/13

https://github.com/ickb/proposal/issues/19


Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information or assets at risk, and often are not directly exploitable. All major issues

should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information or assets at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

12/13



Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

13/13


	526_page1.pdf
	526_page2.pdf

