
Audit Report

Tue Oct 15 2024

contact@bitslab.xyz https://twitter.com/scalebit_

DuckChain Bridge

https://twitter.com/scalebit_
https://www.scalebit.xyz/

DuckChain Bridge Audit Report

1 Executive Summary

1.1 Project Information

Description DuckChain is the Layer2 cross-chain bridge of EVM

Type L2

Auditors ScaleBit

Timeline Sun Sep 29 2024 - Fri Oct 11 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/DuckChainTonL2/duck-bridge-contract

Commits 23ee96a7817dac19c4609adf9d5df96ba9e76d36
b0e51257b1382cf9f0397367ca70fb239f189c29
78dd34c1bc470408c4e9b8891050792fef09c5ce
a20a7b35bbe26b6399b0e6f23e76b2e73de5f600

1/14

https://github.com/DuckChainTonL2/duck-bridge-contract
https://github.com/DuckChainTonL2/duck-bridge-contract/tree/23ee96a7817dac19c4609adf9d5df96ba9e76d36
https://github.com/DuckChainTonL2/duck-bridge-contract/tree/b0e51257b1382cf9f0397367ca70fb239f189c29
https://github.com/DuckChainTonL2/duck-bridge-contract/tree/78dd34c1bc470408c4e9b8891050792fef09c5ce
https://github.com/DuckChainTonL2/duck-bridge-contract/tree/a20a7b35bbe26b6399b0e6f23e76b2e73de5f600

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

L2B contracts/Layer2Bridge.sol 81d96fbb4ccf341fa2c0daf501179e
5f54431338

IL2BERC2 contracts/interfaces/ILayer2Bridge
ERC20.sol

48a8a8ae5ca30c89380ccbae960cb
05bd76e4cfd

ERC2TW contracts/ERC20TokenWrapped.sol 658fce0e9df49f43d0529dfae6015c
1c55dd700b

L2BERC2 contracts/Layer2BridgeERC20.sol 89e46fa649566fb00b9522f5adc47
41014494f48

2/14

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 3 0

Informational 0 0 0

Minor 3 3 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

3/14

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/14

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/14

2 Summary

This report has been commissioned by DuckChain Bridge to identify any potential issues and
vulnerabilities in the source code of the DuckChain Bridge smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

L2B-1 Redundant Code Minor Fixed

L2B-2 proposeAdminAddressList Not
Removed

Minor Fixed

L2B-3 Unnecessary Check Minor Fixed

6/14

3 Participant Process

Here are the relevant actors with their respective abilities within the DuckChain Bridge Smart
Contract :
Deployer

Deployer initializes the __AccessControl_init()/__Pausable_init() function through the

initialize() function, sends the DEFAULT_ADMIN_ROLE permission to the deployer

through the _grantRole() function, and sets the SUPER_ADMIN permission to

_superAdminAddress .

Admin

superAdminAddress can set superAdminAddress via setSuperAdminAddress

function.

superAdminAddress can set normalAdminAddress via setNormalAdminAddress

function.

superAdminAddress and normalAdminAddress can add

proposeAdminAddressSupported via addProposeAdminAddress function.

superAdminAddress and normalAdminAddress can delete

proposeAdminAddressSupported via delProposeAdminAddress function.

superAdminAddress and normalAdminAddress can add

reviewAdminAddressSupported via addReviewAdminAddress function.

superAdminAddress and normalAdminAddress can delete

reviewAdminAddressSupported via delReviewAdminAddress function.

superAdminAddress and normalAdminAddress can add tokenWrappedAddress via

addERC20TokenWrapped function.

superAdminAddress and normalAdminAddress can set the block time limit through the

setBlockTimeLimit function.

proposeAdminAddressSupported can propose bridge transaction proposals through

the propose function.

reviewAdminAddressSupported can review and execute bridge transaction proposals

through the review function.

superAdminAddress and normalAdminAddress can set the pause state through the

pause/unpause function.

7/14

superAdminAddress can set the handling fee through the setBridgeSettingsFee

function.

superAdminAddress and normalAdminAddress can set the blacklist token address

through the setBlackListERC20Token function.

User

User can initiate a withdrawal request by destroying the bridgeERC20Address token

through the burnERC20Token function.

User can initiate a withdrawId request by transferring Native tokens through the

lockNativeToken function.

User can execute a withdrawId request through the claim function and emit an

event based on the value recorded by withdrawId .

User can get the bridge fee through the getBridgeFee function.

8/14

4 Findings

L2B-1 Redundant Code

Severity: Minor

Status: Fixed

Code Location:

contracts/Layer2Bridge.sol#517

Descriptions:

The permission verification reviewAdminAddressSupported[msg.sender] is performed in

both the review function and the mintERC20Token internal function. It does not cause

security issues, but it is an unnecessary check because the Layer2Bridge.mintERC20Token

function is only used in review .

functionfunction reviewreview((
 uint256 proposalIduint256 proposalId,,
 uint256 chainIduint256 chainId,,
 bytes32 txHashbytes32 txHash,,
 bool ifProposalValidbool ifProposalValid
)) publicpublic {{
 requirerequire((reviewAdminAddressSupportedreviewAdminAddressSupported[[msgmsg..sendersender]],, "Illegal permissions""Illegal permissions"));;
......
elseelse {{
 mintERC20TokenmintERC20Token((
 proposalproposal..txHastxHas
 proposalproposal..tokentoken
 proposalproposal..toto,,
 proposalproposal..amounamoun
));;
......
 functionfunction mintERC20TokenmintERC20Token((
 bytes32 txHashbytes32 txHash,,
 address tokenaddress token,,
 address toaddress to,,
 uint256 amountuint256 amount
)) internal whenNotPaused internal whenNotPaused {{
 requirerequire((reviewAdminAddressSupportedreviewAdminAddressSupported[[msgmsg..sendersender]],, "Illegal permissions""Illegal permissions"));;

9/14

Suggestion:

It is recommended to remove duplicate permission checks.

10/14

L2B-2 proposeAdminAddressList Not Removed

Severity: Minor

Status: Fixed

Code Location:

contracts/Layer2Bridge.sol

Descriptions:

proposeAdminAddressList and reviewAdminAddressList are not deleted in

delProposeAdminAddress and delReviewAdminAddress functions.

proposeAdminAddressListproposeAdminAddressList..pushpush((_account_account));;

Suggestion:

It is recommended to delete the corresponding array.

Resolution:

The variables are deleted accordingly in the fix code.

forfor ((uint256 i uint256 i == 00;; i i << length length;; i i++++)) {{
 ifif ((reviewAdminAddressListreviewAdminAddressList[[ii]] ==== _account _account)) {{
 // Move the last element to the place of the element to delete// Move the last element to the place of the element to delete
 reviewAdminAddressListreviewAdminAddressList[[ii]] == reviewAdminAddressList reviewAdminAddressList[[length length -- 11]];;
 // Remove the last element// Remove the last element
 reviewAdminAddressListreviewAdminAddressList..poppop(());;
 breakbreak;;
 }}
 }}

11/14

L2B-3 Unnecessary Check

Severity: Minor

Status: Fixed

Code Location:

contracts/Layer2Bridge.sol#271

Descriptions:

there are duplicate checks in the delProposeAdminAddress and delReviewAdminAddress

functions，There is no need to check ==true .

 requirerequire((
 reviewAdminAddressSupportedreviewAdminAddressSupported[[_account_account]] ==== truetrue,,
 "Current address is not exist""Current address is not exist"
));;

Suggestion:

It is recommended to remove duplicate checks.

Resolution:

Fix duplicate check, and change to AccessControlUpgradeable library.

12/14

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

13/14

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

14/14

	551_page1.pdf
	551_page2.pdf

