
Audit Report

Wed Nov 20 2024

contact@bitslab.xyz https://twitter.com/scalebit_

BLOCKLORDS

https://twitter.com/scalebit_
https://www.scalebit.xyz/


BLOCKLORDS Audit Report

1 Executive Summary

1.1 Project Information

Description BLOCKLORDS is a player-driven MMO medieval grand strategy
game where your decisions and skills shape the world and
narrative

Type Game

Auditors ScaleBit

Timeline Thu Nov 07 2024 - Wed Nov 20 2024

Languages Solidity

Platform Base

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/blocklords/lordchain-smartcontracts

Commits b7d38514827e86d870544293dee27414bd4305f9
3cc14ddd1cd2ff2dd78bdb811ce3c242322a8107
c0c6b75420d53627556db92e0de4acc84ce4e46f
a27ef7e75966a956d772df19490f72add88f8c62

1/44

https://github.com/blocklords/lordchain-smartcontracts
https://github.com/blocklords/lordchain-smartcontracts/tree/b7d38514827e86d870544293dee27414bd4305f9
https://github.com/blocklords/lordchain-smartcontracts/tree/3cc14ddd1cd2ff2dd78bdb811ce3c242322a8107
https://github.com/blocklords/lordchain-smartcontracts/tree/c0c6b75420d53627556db92e0de4acc84ce4e46f
https://github.com/blocklords/lordchain-smartcontracts/tree/a27ef7e75966a956d772df19490f72add88f8c62


1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

VAL contracts/Validator.sol 879d4e75973d88daed53c364b10b
efddc6681402

VFA contracts/ValidatorFactory.sol c8789af8ea00cdeca3916176772b6
b7c23f9ec74

IVF contracts/interfaces/IValidatorFact
ory.sol

6180e79caf279315ab9a0014b17e1
cd9736e3ca7

IVA contracts/interfaces/IValidator.sol dea2e48f39cb880a1b4cdd2a948c
aa8f96b8ac45

IGO contracts/interfaces/IGovernance.s
ol

3b3326bf4e052ec5cbc186f5b7616
06f7c8f2b2e

GOV contracts/Governance.sol e89f2e0b6be3fe242794057377d17
98e24c85933

VFE contracts/ValidatorFees.sol c0c815e2a30e10d20a30c442736c6
5c3f00f5776

2/44



1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 24 24 0

Informational 2 2 0

Minor 11 11 0

Medium 4 4 0

Major 7 7 0

Critical 0 0 0

3/44



1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/44



1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/44



2 Summary

This report has been commissioned by BLOCKLORDS to identify any potential issues and
vulnerabilities in the source code of the BLOCKLORDS smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 24 issues of varying severity, listed below.

ID Title Severity Status

GOV-1 The User can Claim Extra Boost
Rewards

Major Fixed

GOV-2 Incorrect Status Handling for Boost
Proposals in
executeVoteRewardProposal

Function

Medium Fixed

GOV-3 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

GOV-4 The Two-step Ownership Transfer
Implementation Is Incorrect

Medium Fixed

GOV-5 Inconsistent Proposal ID
Generation in
createBoostPropose  Functions

Minor Fixed

GOV-6 Invalid Fee Check in setDepositFee
and setClaimFee  Functions

Minor Fixed

GOV-7 Missing Status Validation for Voting Minor Fixed

VAL-1 Lack of Access Control Major Fixed

6/44



VAL-2 The User's Rewards will be Lost Major Fixed

VAL-3 Due to an Overflow, the User is
unable to Claim Rewards

Major Fixed

VAL-4 The User can Repeatedly Claim
Rewards from Previous Periods

Major Fixed

VAL-5 The User's Voting Rewards will also
be Included in the Calculation of
Period Rewards

Major Fixed

VAL-6 Missing BoostReward Distribution
in withdraw  Function

Major Fixed

VAL-7 Possible Inability to Claim Fees Medium Fixed

VAL-8 Incorrect Condition in Quality
Check

Minor Fixed

VAL-9 Unnecessary Update of User
Reward Debt

Minor Fixed

VFA-1 Incorrect Condition in
SubTotalStakedWallet  Function

Leading to Underflow Error

Minor Fixed

VFA-2 Missing Check for _endTime >
_startTime  in AddTotalValidators
Function

Minor Fixed

VFA-3 Ineffective Condition in
createValidator  Function

Minor Fixed

VFA-4 Invalid Global Variables Minor Fixed

VFA-5 Missing Zero Address Check in
setVoter Function

Informational Fixed

7/44



VAL-10 Updating the User's Debt after
Deleting the User's Information is
Meaningless

Minor Fixed

VAL-11 Incorrect Withdraw Event Logs Due
to Reset User Data

Minor Fixed

VAL-12 Mismatch Between MAX_LOCK
Value and Commented Description
of Lock Duration

Informational Fixed

8/44



3 Participant Process

Here are the relevant actors with their respective abilities within the BLOCKLORDS Smart
Contract :
Admin

createPropose: Creates a new proposal for votin.

createBoostPropose: Creates a new boost proposal for validators.

addBoostReward: Distributes the boost rewards to the validators based on their

votes.

resetVotes: reset votes for users.

cancelProposal: Cancels a proposal by marking it as cancelled.

cancelBoostProposal: Cancels a boost proposal by marking it as cancelled.

setVoteReward: Sets the reward token and reward amount for a given proposal.

executeVoteRewardProposal: Executes the reward distribution for a given proposal

based on the vote weight.

setRewardPeriod: Configures a new reward period.

setName: Updates the validator’s name.

setVerifier: Sets the verifier address responsible for signature verification.

setMasterValidator: Assigns the master validator's address for controlling validator

functions.

setVoter: Defines the address of the governance voter.

claimFees: Claims accumulated fees in the contract on behalf of the admin.

setDepositFee: Adjusts the deposit fee percentage, constrained by the maximum

allowable limit.

setClaimFee: Adjusts the claim fee percentage, up to the maximum allowed limit.

setPauseState: Toggles the contract’s pause state, allowing or restricting certain

operations as a safety measure.

User

9/44



vote: Users can vote for a given proposal.

getUserVotesForAllChoices: Retrieves the number of votes cast by a user for all

available choices in a specific proposal.

getProposalOptionVotes: Retrieves the total number of votes cast for each available

choice in a specific proposal.

createLock: Starts a staking lock with a specific amount and duration, enabling the

user to earn rewards.

increaseAmount: Adds to the user’s staked amount within an active lock.

extendDuration: Extends the duration of an existing lock period, allowing continued

participation in staking rewards.

claim: Claims any pending rewards based on the user’s staked amount.

withdraw: Withdraws the staked tokens once the lock period has expired.

setAutoMax: Enables or disables the autoMax  feature, which automatically sets the

lock duration to the maximum allowed period.

10/44



4 Findings

GOV-1 The User can Claim Extra Boost Rewards

Severity: Major

Status: Fixed

Code Location:

contracts/Governance.sol#767-795

Descriptions:

The user can call the claimBoostReward()  function to claim the boost reward.

functionfunction  claimBoostRewardclaimBoostReward(()) external nonReentrant whenNotPaused  external nonReentrant whenNotPaused {{
                UserInfoUserInfo storage user  storage user == userInfo userInfo[[msgmsg..sendersender]];;

                uint256 totalBoostPending uint256 totalBoostPending ==  _calculateBoostPending_calculateBoostPending((useruser));;

                ifif  ((totalBoostPending totalBoostPending <=<=  00)) revert  revert InvalidBoostRewardInvalidBoostReward(());;

                // Transfer the total pending boost reward to the user// Transfer the total pending boost reward to the user
                IERC20IERC20((tokentoken))..transfertransfer((msgmsg..sendersender,, totalBoostPending totalBoostPending));;
                
                uint256 totalBoostDebt uint256 totalBoostDebt ==  00;;

                // Loop through each reward period from the user's last updated period to the// Loop through each reward period from the user's last updated period to the  
currentcurrent
                forfor  ((uint256 i uint256 i ==  00;; i  i << currentBoostRewardPeriodIndex currentBoostRewardPeriodIndex;; i i++++))  {{
                        BoostRewardBoostReward storage boost  storage boost == boostRewards boostRewards[[ii]];;

                        ifif((!!IGovernanceIGovernance((governancegovernance))..isBoostVoteisBoostVote((ii))))  continuecontinue  ;;

                        ifif  ((blockblock..timestamptimestamp  << boost boost..startTimestartTime))  {{
                                breakbreak;;
                        }}

                        totalBoostDebt totalBoostDebt +=+=  ((useruser..amountamount  ** boost boost..accTokenPerShareaccTokenPerShare))  //  PRECISION_FACTORPRECISION_FACTOR;;
                }}

                boostRewardDebtboostRewardDebt[[msgmsg..sendersender]]  == totalBoostDebt totalBoostDebt;;  

11/44



                emit emit BoostRewardClaimedBoostRewardClaimed((msgmsg..sendersender,, totalBoostPending totalBoostPending));;
        }}

There is an issue where if the user deposits 100 in Period 1, then another 100 in Period 10,

and calls claimBoostReward() , they are able to claim all boost rewards from Period 1 to

Period 10.

Suggestion:

It is recommended to distribute the boost rewards to the user at the time of claiming

rewards.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/44



GOV-2 Incorrect Status Handling for Boost Proposals in
executeVoteRewardProposal  Function

Severity: Medium

Status: Fixed

Code Location:

contracts/Governance.sol#472,535

Descriptions:

                // Check the proposal status// Check the proposal status
                ifif  ((proposalsproposals[[_proposalId_proposalId]]..statusstatus  !=!=  FinalizationStatusFinalizationStatus..PendingPending))  {{
                        revertrevert(("Proposal is not in Pending status""Proposal is not in Pending status"));;
                }}

                // ... rest of the function logic ...// ... rest of the function logic ...

                // Update the proposal status to Executed// Update the proposal status to Executed
                proposalsproposals[[_proposalId_proposalId]]..statusstatus  ==  FinalizationStatusFinalizationStatus..ExecutedExecuted;;

Currently, the function only checks and updates the status of regular proposals using

proposals[_proposalId].status . For boost proposals, whose statuses are stored separately

in boostProposals[_proposalId].status , this check and update are not performed. As a

result, after executing the reward distribution for a boost proposal, its status remains

Pending, which can lead to inconsistencies in the contract's state.

Suggestion:

1. Check the Correct Status Field:

For regular proposals, continue to check proposals[_proposalId].status.

For boost proposals, check boostProposals[_proposalId].status.

2. Update the Correct Status Field After Execution:

For regular proposals, update proposals[_proposalId].status to

FinalizationStatus.Executed.

13/44



For boost proposals, update boostProposals[_proposalId].status to

FinalizationStatus.Executed.

14/44



GOV-3 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

contracts/Governance.sol#5

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. Below is the official documentation explanation from OpenZeppelin：

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

importimport  "@openzeppelin/contracts/access/Ownable.sol""@openzeppelin/contracts/access/Ownable.sol";;

Suggestion:

It is recommended to use a two-step ownership transfer pattern.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/44

https://docs.openzeppelin.com/contracts/4.x/api/access


GOV-4 The Two-step Ownership Transfer Implementation Is
Incorrect

Severity: Medium

Status: Fixed

Code Location:

contracts/Governance.sol#279-288

Descriptions:

In the acceptOwnership  function, transferOwnership  is called to transfer ownership, but it

should actually call _transferOwnership (OpenZeppelin Ownable.sol link) instead of

transferOwnership .

        functionfunction  acceptOwnershipacceptOwnership(()) external nonReentrant  external nonReentrant {{
                // Ensure that only the nominated address can accept ownership// Ensure that only the nominated address can accept ownership
                ifif  ((msgmsg..sendersender  !=!= newOwner newOwner))  revert   revert notNominatedAddressnotNominatedAddress(());;
                
                // Transfer ownership to the nominated address// Transfer ownership to the nominated address
                transferOwnershiptransferOwnership((newOwnernewOwner));;
                
                // Reset the nominated address after transfer// Reset the nominated address after transfer
                newOwner newOwner ==  addressaddress((00));;
        }}

        functionfunction  transferOwnershiptransferOwnership((address _newOwneraddress _newOwner))  publicpublic override  onlyOwner  override  onlyOwner {{
                ifif  ((_newOwner _newOwner ====  addressaddress((00)))) revert  revert ZeroAddressZeroAddress(());;
                newOwner newOwner == _newOwner _newOwner;;
        }}

Suggestion:

It’s recommended to refer to the implementation in OpenZeppelin’s Ownable2Step.sol.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/44

javascript:void(0)
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol


GOV-5 Inconsistent Proposal ID Generation in
createBoostPropose  Functions

Severity: Minor

Status: Fixed

Code Location:

contracts/Governance.sol#128

Descriptions:

There is an inconsistency in the increment method of proposalCount between the

createPropose  and createBoostPropose  functions, leading to potential discrepancies in

proposal ID generation:

In the createPropose  function:

uint256 proposalId uint256 proposalId == proposalCount proposalCount++++;;

In the createBoostPropose  function:

uint256 proposalId uint256 proposalId ==  ++++proposalCountproposalCount;;

Since proposalCount++  and ++proposalCount  increment operations differ in their order

of execution, this discrepancy could result in inconsistent proposal IDs, potentially leading to

tracking issues or unexpected behavior.

Suggestion:

To ensure consistent proposal ID generation, it is recom proposalCount++  for both

functions is advisable to maintain consistency.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/44



GOV-6 Invalid Fee Check in setDepositFee  and setClaimFee
Functions

Severity: Minor

Status: Fixed

Code Location:

contracts/Governance.sol#846,857

Descriptions:

ifif  ((_fee _fee <<  00)) revert  revert WrongFeeWrongFee(());;

In both the setDepositFee  and setClaimFee  functions, there is a check for _fee < 0  to

validate the input fee. However, since _fee  is of type uint256 , it can never be negative,

making the condition _fee < 0  redundant and ineffective.

Suggestion:

Remove the _fee < 0 check in both functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/44



GOV-7 Missing Status Validation for Voting

Severity: Minor

Status: Fixed

Code Location:

contracts/Governance.sol#167

Descriptions:

Voting should only be allowed when the proposal is in a pending state, but the contract does

not perform this validation.

functionfunction  votevote((uint256 _proposalIduint256 _proposalId,, uint256 uint256[[]] calldata _choiceIds calldata _choiceIds,, uint256 uint256[[]] calldata calldata  
_weights_weights)) external nonReentrant  external nonReentrant {{
                // Check if choiceIds and weights lengths match// Check if choiceIds and weights lengths match
                ifif  ((_choiceIds_choiceIds..lengthlength  !=!= _weights _weights..lengthlength)) revert  revert UnequalLengthsUnequalLengths(());;

                // Declare the Proposal storage variable here after checking the type of proposal// Declare the Proposal storage variable here after checking the type of proposal
                ifif  ((isBoostVoteisBoostVote[[_proposalId_proposalId]]))  {{
                        // Boost proposal voting logic// Boost proposal voting logic
                        ValidatorBoostProposalValidatorBoostProposal storage boostProposal  storage boostProposal == boostProposals boostProposals[[_proposalId_proposalId]];;

                        // Common check for voting period// Common check for voting period
                        _checkVotingPeriod_checkVotingPeriod((boostProposalboostProposal..startTimestartTime,, boostProposal boostProposal..endTimeendTime));;

                        _vote_vote((_proposalId_proposalId,, _choiceIds _choiceIds,, _weights _weights,, proposalValidatorCounts proposalValidatorCounts[[_proposalId_proposalId]],,  
truetrue));;
                }}  elseelse  {{
                        // Regular proposal voting logic// Regular proposal voting logic
                        ProposalProposal storage proposal  storage proposal == proposals proposals[[_proposalId_proposalId]];;
                        
                        // Common check for voting period// Common check for voting period
                        _checkVotingPeriod_checkVotingPeriod((proposalproposal..startTimestartTime,, proposal proposal..endTimeendTime));;

                        _vote_vote((_proposalId_proposalId,, _choiceIds _choiceIds,, _weights _weights,, proposal proposal..totalChoicestotalChoices,,  falsefalse));;
                }}
        }}

Suggestion:

19/44



It is recommended to add status validation to ensure voting is only allowed for pending

proposals.

Resolution:

This issue has been fixed. The client has added status validation to ensure voting is only

allowed for pending proposals.

20/44



VAL-1 Lack of Access Control

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#154-196

Descriptions:

The createValidator  function in the ValidatorFactory contract lacks any access control. Is

access control needed for this function?

        functionfunction  createValidatorcreateValidator((address _owneraddress _owner,, uint256 _quality uint256 _quality,, address _verifier address _verifier))  publicpublic  
returnsreturns  ((address validatoraddress validator))  {{
                uint256 validatorId uint256 validatorId == allValidators allValidators..lengthlength;;    // Use the length of allValidators array as// Use the length of allValidators array as  
the validatorIdthe validatorId

                bytes32 salt bytes32 salt ==  keccak256keccak256((abiabi..encodePackedencodePacked((_quality_quality,, _owner _owner,, validatorId validatorId))));;  // salt// salt  
includes stable as well, 3 parametersincludes stable as well, 3 parameters
              
                validator validator ==  ClonesClones..cloneDeterministiccloneDeterministic((implementationimplementation,, salt salt));;
                
                IValidatorIValidator((validatorvalidator))..initializeinitialize((msgmsg..sendersender,, _owner _owner,, validatorId validatorId,, _quality _quality,, _verifier _verifier));;
        
                allValidatorsallValidators..pushpush((validatorvalidator));;

                _isValidator_isValidator[[validatorvalidator]]  ==  truetrue;;

                emit emit ValidatorCreatedValidatorCreated((_owner_owner,, validator validator,, allValidators allValidators..lengthlength));;
        }}

Suggestion:

It is recommended to implement access control.

Resolution:

This issue has been fixed. The client has implemented access control.

21/44



VAL-2 The User's Rewards will be Lost

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#506

Descriptions:

In the _deposit()  function, the protocol updates the user’s reward debt as follows:

_user_user..rewardDebtrewardDebt  ==  ((_user_user..amountamount  **  
rewardPeriodsrewardPeriods[[getCurrentPeriodgetCurrentPeriod(())]]..accTokenPerShareaccTokenPerShare))  //  PRECISION_FACTORPRECISION_FACTOR;;

However, before updating the user’s rewardDebt , the protocol does not distribute the

rewards previously earned by the user. This results in the loss of rewards.

For example, if the lockDuration  is 30 days and the RewardPeriod  is also 30 days:

1. On Day 1, the user deposits 200 tokens. user.rewardDebt = 200 * accTokenPerShare .

2. After 15 days, accTokenPerShare  increases to accTokenPerShare1 . The user then

deposits an additional 300 tokens.

3. The protocol calculates user.rewardDebt  as (200 + 300) * accTokenPerShare1 .

In this calculation, the rewards accumulated during the first 15 days are effectively lost, as

the protocol does not account for them before recalculating user.rewardDebt .

Suggestion:

It is recommended to distribute the user's previously accrued rewards before updating their

rewardDebt .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/44



VAL-3 Due to an Overflow, the User is unable to Claim Rewards

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#672

Descriptions:

In the claim()  function, the protocol calls the _updateUserRewards()  function to update

_user.rewardDebt , setting it to accumulatedRewards .

        functionfunction  _updateUserRewards_updateUserRewards((UserInfoUserInfo storage _user storage _user)) internal  internal {{
                uint256 accumulatedRewards uint256 accumulatedRewards == _user _user..rewardDebtrewardDebt;;

                // Loop through each reward period from the user's last updated period to the// Loop through each reward period from the user's last updated period to the  
currentcurrent
                forfor  ((uint256 i uint256 i == _user _user..lastUpdatedRewardPeriodlastUpdatedRewardPeriod;; i  i << currentRewardPeriodIndex currentRewardPeriodIndex;; i i++++))  
{{
                        RewardPeriodRewardPeriod memory period  memory period == rewardPeriods rewardPeriods[[ii]];;
                        
                        ifif  ((periodperiod..endTimeendTime  <=<= block block..timestamptimestamp))  {{
                                accumulatedRewards accumulatedRewards +=+=  ((_user_user..amountamount  ** period period..accTokenPerShareaccTokenPerShare))  //  
PRECISION_FACTORPRECISION_FACTOR;;
                        }}
                }}

                _user_user..rewardDebtrewardDebt  == accumulatedRewards accumulatedRewards;;
        }}

In the _calculateTotalPending()  function, the protocol calculates the rewards for each

period, then uses the formula pendingReward - _user.rewardDebt .

        functionfunction  _calculatePending_calculatePending((UserInfoUserInfo storage _user storage _user,, uint256 _periodIndex uint256 _periodIndex)) internal view internal view  
returnsreturns  ((uint256uint256))  {{
                RewardPeriodRewardPeriod memory period  memory period == rewardPeriods rewardPeriods[[_periodIndex_periodIndex]];;

                // If the user's staked amount is 0 or the current time is before the reward period// If the user's staked amount is 0 or the current time is before the reward period  
start time, return 0 pending rewardstart time, return 0 pending reward

23/44



                ifif  ((_user_user..amountamount  ====  00  |||| block block..timestamptimestamp  << period period..startTimestartTime))  {{
                        returnreturn  00;;
                }}

                // Calculate the current accTokenPerShare for this reward period// Calculate the current accTokenPerShare for this reward period
                uint256 currentAccTokenPerShare uint256 currentAccTokenPerShare == period period..accTokenPerShareaccTokenPerShare;;
                ifif  ((blockblock..timestamptimestamp  <=<= period period..endTimeendTime))  {{
                        uint256 lrdsReward uint256 lrdsReward ==  _calculateLrdsReward_calculateLrdsReward((_periodIndex_periodIndex));;
                        currentAccTokenPerShare currentAccTokenPerShare +=+=  ((lrdsReward lrdsReward **  PRECISION_FACTORPRECISION_FACTOR))  // totalStaked totalStaked;;
                }}

                // Calculate the pending reward based on the user's staked amount and the// Calculate the pending reward based on the user's staked amount and the  
period's accTokenPerShareperiod's accTokenPerShare
                uint256 pendingReward uint256 pendingReward ==  ((_user_user..amountamount  ** currentAccTokenPerShare currentAccTokenPerShare))  //  
PRECISION_FACTORPRECISION_FACTOR;;

                // Subtract the user's reward debt to get the actual pending reward for this period// Subtract the user's reward debt to get the actual pending reward for this period
                returnreturn pendingReward  pendingReward -- _user _user..rewardDebtrewardDebt;;
        }}

However, since _user.rewardDebt  holds the accumulated value from previous periods, this

subtraction can result in an overflow.

Suggestion:

It is recommended to calculate the user's rewards first and then update the reward debt.

Resolution:

This issue has been fixed. The client transferred the rewards to the user before updating the

reward debt.

24/44



VAL-4 The User can Repeatedly Claim Rewards from Previous
Periods

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#586-606

Descriptions:

In the _deposit()  function, the protocol distributes the previous earnings to the user.

        functionfunction  _claim_claim((uint256 _pendinguint256 _pending)) internal  internal returnsreturns  ((uint256 userClaimAmountuint256 userClaimAmount,, uint256 uint256  
feeAmountfeeAmount))  {{
                // If there are no pending rewards, return zero values// If there are no pending rewards, return zero values
                ifif  ((_pending _pending ====  00))  returnreturn  ((00,,  00));;

                // Ensure the contract has enough reward tokens to cover the pending claim// Ensure the contract has enough reward tokens to cover the pending claim
                ifif  ((IERC20IERC20((tokentoken))..balanceOfbalanceOf((addressaddress((thisthis))))  << _pending _pending)) revert  revert 
NotEnoughRewardTokenNotEnoughRewardToken(());;

                // Calculate the claim fee (claimFee is in basis points, e.g., 300 = 3%)// Calculate the claim fee (claimFee is in basis points, e.g., 300 = 3%)
                feeAmount feeAmount ==  ((_pending _pending ** claimFee claimFee))  //  1000010000;;
                userClaimAmount userClaimAmount == _pending  _pending -- feeAmount feeAmount;;

                // Transfer the fee to the contract owner// Transfer the fee to the contract owner
                ifif  ((feeAmount feeAmount >>  00))  {{
                        IERC20IERC20((tokentoken))..safeTransfersafeTransfer((ownerowner,, feeAmount feeAmount));;
                }}

                // Transfer the remaining rewards to the user// Transfer the remaining rewards to the user
                IERC20IERC20((tokentoken))..safeTransfersafeTransfer((msgmsg..sendersender,, userClaimAmount userClaimAmount));;
                
                emit emit ClaimClaim((msgmsg..sendersender,, userClaimAmount userClaimAmount,, feeAmount feeAmount));;
        }}

However, unlike the claim()  function, the protocol does not update

user.lastUpdatedRewardPeriod = currentPeriod  when distributing the earnings.

25/44



                // Update the user's last updated reward period to the current period// Update the user's last updated reward period to the current period
                useruser..lastUpdatedRewardPeriodlastUpdatedRewardPeriod  == currentPeriod currentPeriod;;

As a result, the user is able to claim rewards for the previous periods multiple times.

Suggestion:

It is recommended to update user.lastUpdatedRewardPeriod  after the user claims the

rewards.

Resolution:

This issue has been fixed. The client directly transferred the rewards to the user and then

updated the user debt.

26/44



VAL-5 The User's Voting Rewards will also be Included in the
Calculation of Period Rewards

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#744-751

Descriptions:

In the Governance.claimAndLock()  function, the protocol transfers the reward to the

validator and then calls IValidator(masterValidator).stakeFor()  to increase the user's

user.amount .

    // Transfer the reward amount from the bank to the MasterValidator for staking// Transfer the reward amount from the bank to the MasterValidator for staking
                IERC20IERC20((tokentoken))..safeTransferFromsafeTransferFrom((bankbank,, masterValidator masterValidator,, rewardAmount rewardAmount));;

                // Stake the reward in the MasterValidator contract on behalf of the user// Stake the reward in the MasterValidator contract on behalf of the user
                IValidatorIValidator((masterValidatormasterValidator))..stakeForstakeFor((msgmsg..sendersender,, rewardAmount rewardAmount));;

        functionfunction  stakeForstakeFor((address _useraddress _user,, uint256 _amount uint256 _amount)) external onlyGovernance  external onlyGovernance {{
                // Increase the user's staked amount// Increase the user's staked amount
                UserInfoUserInfo storage use  storage use == userInfo userInfo[[_user_user]];;
                ifif  ((useuse..amountamount  <=<=  00  )) revert  revert NoLockCreatedNoLockCreated(());;  
                useuse..amountamount  +=+= _amount _amount;;

                emit emit StakeForUserStakeForUser((_user_user,, _amount _amount));;
        }}

There is an attack scenario here: if there are 10 periods during the staking lock-up, and the

user deposits during period 1, then participates in governance voting until the proposal

ends. The user first calls Governance.claimAndLock() , which triggers the stakeFor()

function, directly updating the user's user.amount += rewardAmount . Then, when the

Validator.claim()  function is called, the user's reward for each period is calculated as

27/44



pending = user.amount * accTokenPerShare . Since the user.amount  now includes the

rewardAmount generated in governance, it will participate in the reward calculation for each

period, leading the user to receive more rewards than intended.

Suggestion:

It is recommended to re-deposit the user's voting rewards back to the user.

Resolution:

This issue has been fixed. The client re-deposited the voting rewards back to the user.

28/44



VAL-6 Missing BoostReward Distribution in withdraw
Function

Severity: Major

Status: Fixed

Code Location:

contracts/Validator.sol#293-334

Descriptions:

        functionfunction  withdrawwithdraw(()) external nonReentrant whenNotPaused  external nonReentrant whenNotPaused {{
                UserInfoUserInfo storage user  storage user == userInfo userInfo[[msgmsg..sendersender]];;

                ifif  ((useruser..amountamount  <=<=  00)) revert  revert ZeroAmountZeroAmount(());;
                ifif  ((blockblock..timestamptimestamp  << user user..lockEndTimelockEndTime)) revert  revert TimeNotUpTimeNotUp(());;
                ifif  ((useruser..autoMaxautoMax  ====  truetrue)) revert  revert AutoMaxTimeAutoMaxTime(());;

                // Update global reward state and user-specific rewards// Update global reward state and user-specific rewards
                _updateValidator_updateValidator(());;
                _updateBoostReward_updateBoostReward(());;

                ifif  ((IERC20IERC20((tokentoken))..balanceOfbalanceOf((addressaddress((thisthis))))  << user user..amountamount)) revert  revert 
NotEnoughRewardTokenNotEnoughRewardToken(());;

                // Calculate the total pending rewards// Calculate the total pending rewards
                uint256 totalPending uint256 totalPending ==  _calculateTotalPending_calculateTotalPending((useruser));;

                ifif  ((totalPending totalPending >>  00))  {{
                        // Call _claim to distribute the rewards// Call _claim to distribute the rewards
                        _claim_claim((totalPendingtotalPending));;
                }}

                  // Transfer the user's staked amount back to them// Transfer the user's staked amount back to them
                IERC20IERC20((tokentoken))..safeTransfersafeTransfer((msgmsg..sendersender,, user user..amountamount));;

                // Reset votes associated with the user// Reset votes associated with the user
                ifif  ((addressaddress((thisthis))  ==== masterValidator masterValidator))  {{
                        IGovernanceIGovernance((governancegovernance))..resetVotesresetVotes((msgmsg..sendersender));;
                }}

29/44



                // Update the global staking total// Update the global staking total
                totalStaked totalStaked -=-= user user..amountamount;;

                // Update the total staked amount and wallet count in the factory contract// Update the total staked amount and wallet count in the factory contract
                IValidatorFactoryIValidatorFactory((factoryfactory))..subTotalStakedAmountsubTotalStakedAmount((useruser..amountamount));;
                IValidatorFactoryIValidatorFactory((factoryfactory))..subTotalStakedWalletsubTotalStakedWallet(());;

                deletedelete userInfo userInfo[[msgmsg..sendersender]];;

                _updateUserDebt_updateUserDebt((useruser));;

                emit emit WithdrawWithdraw((msgmsg..sendersender,, user user..amountamount));;
        }}

In the withdraw function of the BoostReward distribution is overlooked. After executing

delete userInfo[msg.sender] , the user's information is reset, which prevents them from

claiming the BoostReward.

Suggestion:

Modify the withdraw function to prioritize the distribution of BoostReward before reset

userinfo. This ensures that users receive all pending rewards, when they exit.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

30/44



VAL-7 Possible Inability to Claim Fees

Severity: Medium

Status: Fixed

Code Location:

contracts/Validator.sol#198

Descriptions:

In the setRewardPeriod  function of the validator  contract, the token  in the validatorFee

contract is set using the following code:

ValidatorFeesValidatorFees((validatorFeesvalidatorFees))..setTokensetToken((_stakeToken_stakeToken));;

If _stakeToken  in setRewardPeriod  differs from the previous call, fees from the prior

reward period may become unclaimable.

Suggestion:

It is recommended to change the token  in ValidatorFee  to an array.

Resolution:

This issue has been fixed. The client has specified that only one type of token is allowed.

31/44



VAL-8 Incorrect Condition in Quality Check

Severity: Minor

Status: Fixed

Code Location:

contracts/Validator.sol#123

Descriptions:

In the Validator contract, the following line is intended to validate that the _quality

parameter is within the acceptable range:

ifif  ((_quality _quality <<  11  &&&& _quality  _quality >>  77)) revert  revert QualityWrongQualityWrong(());;

However, this condition will always evaluate to false because _quality cannot be both less

than 1 and greater than 7 at the same time. As a result, this check does not effectively

validate _quality, and invalid values outside the range 1–7 may pass through undetected.

Suggestion:

To properly enforce the range, the condition should use the logical OR (||) operator instead

of AND (&&).

Resolution:

This issue has been fixed. The client has adopted our suggestions.

32/44



VAL-9 Unnecessary Update of User Reward Debt

Severity: Minor

Status: Fixed

Code Location:

contracts/Validator.sol

Descriptions:

In the _deposit()  function, the protocol calls the _updateUserRewards()  function to update

_user.rewardDebt .

  functionfunction  _deposit_deposit((uint256 _amountuint256 _amount,, uint256 _lockDuration uint256 _lockDuration,,  UserInfoUserInfo storage _user storage _user))  
internal internal {{
                // Update global reward state and user-specific rewards// Update global reward state and user-specific rewards
                _updateValidator_updateValidator(());;
                _updateUserRewards_updateUserRewards((_user_user));;
                _updateBoostReward_updateBoostReward((currentBoostRewardPeriodIndexcurrentBoostRewardPeriodIndex));;

Later, within the same _deposit()  function, the protocol updates _user.rewardDebt  again.

                // If lock duration is provided but no amount is being deposited, just extend the lock// If lock duration is provided but no amount is being deposited, just extend the lock  
durationduration
                ifif  ((_lockDuration _lockDuration >>  00  &&&& _amount  _amount ====  00))  {{
                        _user_user..lockEndTimelockEndTime  == block block..timestamptimestamp  << _user _user..lockEndTimelockEndTime  ?? _user _user..lockEndTimelockEndTime  ++  
_lockDuration _lockDuration :: block block..timestamptimestamp  ++ _lockDuration _lockDuration;;
                }}

                _user_user..rewardDebtrewardDebt  ==  ((_user_user..amountamount  **  
rewardPeriodsrewardPeriods[[getCurrentPeriodgetCurrentPeriod(())]]..accTokenPerShareaccTokenPerShare))  //  PRECISION_FACTORPRECISION_FACTOR;;

This second update will overwrite the first one, making the initial update performed by

_updateUserRewards()  unnecessary.

Suggestion:

It is recommended to remove the call to _updateUserRewards() .

33/44



Resolution:

This issue has been fixed. The client has adopted our suggestions.

34/44



VFA-1 Incorrect Condition in SubTotalStakedWallet  Function
Leading to Underflow Error

Severity: Minor

Status: Fixed

Code Location:

contracts/ValidatorFactory.sol#88

Descriptions:

In the SubTotalStakedWallet function, there is an incorrect condition check:

ifif  ((totalStakedWallet totalStakedWallet <<  00)) revert  revert NotEnoughWalletNotEnoughWallet(());;
totalStakedWallettotalStakedWallet----;;

Since totalStakedWallet is of type uint256, it can never be less than zero. This check is

redundant and does not prevent underflow errors.

Suggestion:

We recommend replacing it with an explicit zero check.

ifif  ((totalStakedWallet totalStakedWallet ====  00)) revert  revert NotEnoughWalletNotEnoughWallet(());;

35/44



VFA-2 Missing Check for _endTime > _startTime  in
AddTotalValidators Function

Severity: Minor

Status: Fixed

Code Location:

contracts/ValidatorFactory.sol#93-114

Descriptions:

In the AddTotalValidators function, there is no check to ensure that _endTime > _startTime .

This oversight can lead to two issues in getTotalValidatorRewards() :

1. Underflow

uint256 duration uint256 duration == totalValidators totalValidators[[ii]]..endTimeendTime  -- totalValidators totalValidators[[ii]]..startTimestartTime;;

2. Division by Zero

uint256 duration uint256 duration == totalValidators totalValidators[[ii]]..endTimeendTime  -- totalValidators totalValidators[[ii]]..startTimestartTime;;
totalValidatorRewards totalValidatorRewards +=+=  ((period period ** totalValidators totalValidators[[ii]]..totalRewardtotalReward))  // duration duration;;

This could cause a Denial of Service (DoS) by reverting the getTotalValidatorRewards

function whenever it is called.

Suggestion:

To prevent these issues, add a check in the AddTotalValidators function to ensure _endTime

is greater than _startTime. This will help avoid potential underflow and division by zero

errors.

ifif  ((_endTime _endTime <=<= _startTime _startTime)) revert  revert InvalidTimePeriodInvalidTimePeriod(());;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

36/44



VFA-3 Ineffective Condition in createValidator  Function

Severity: Minor

Status: Fixed

Code Location:

contracts/ValidatorFactory.sol#158

Descriptions:

In the createValidator  function, there is an ineffective check designed to verify if a validator

already exists based on validatorId:

uint256 validatorId uint256 validatorId == allValidators allValidators..lengthlength;;    // Use the length of allValidators array as the// Use the length of allValidators array as the  
validatorIdvalidatorId

// Check if validator already exists by checking if the validatorId already exists in// Check if validator already exists by checking if the validatorId already exists in  
allValidators arrayallValidators array
ifif  ((validatorId validatorId << allValidators allValidators..lengthlength  &&&& allValidators allValidators[[validatorIdvalidatorId]]  !=!=  addressaddress((00)))) revert  revert 
PoolAlreadyExistsPoolAlreadyExists(());;

However, this check will never execute due to the following reasons:

1. validatorId < allValidators.length  will always be false: Since validatorId is defined as

allValidators.length, this condition checks if allValidators.length < allValidators.length,

which is impossible.

2. allValidators[validatorId] != address(0)  will also always be false in this context

As a result, this check is ineffective, and PoolAlreadyExists() will never trigger.

Suggestion:

To improve code readability and maintainability, it is recommended to remove this

ineffective condition, consider implementing a more reliable check.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

37/44



VFA-4 Invalid Global Variables

Severity: Minor

Status: Fixed

Code Location:

contracts/ValidatorFactory.sol#23-24

Descriptions:

Several global variables in the ValidatorFactory contract are ineffective, such as feeManager

and voter. Additionally, the isPaused  variable does not successfully pause the validator.

        mappingmapping((addressaddress  =>=> bool bool))  publicpublic isPaused isPaused;;

Suggestion:

It is recommended to review and correct the implementation of these variables.

Resolution:

This issue has been fixed. The client has removed the global variables.

38/44



VFA-5 Missing Zero Address Check in setVoter Function

Severity: Informational

Status: Fixed

Code Location:

contracts/ValidatorFactory.sol#125

Descriptions:

The setVoter function currently lacks a zero address check, unlike similar functions in the

contractsetPauser and setFeeManager, which include this validation.

Suggestion:

To enhance code consistency and ensure a valid voter address is always assigned, we

recommend adding a zero address check in the setVoter  function.

39/44



VAL-10 Updating the User's Debt after Deleting the User's
Information is Meaningless

Severity: Minor

Status: Fixed

Code Location:

contracts/Validator.sol#331

Descriptions:

In the withdraw()  function, the protocol first deletes the user's information, and then calls

_updateUserDebt()  to update the user's debt.

            deletedelete userInfo userInfo[[msgmsg..sendersender]];;

                _updateUserDebt_updateUserDebt((useruser));;

The issue here is that once the user's information is deleted, updating the debt with

_updateUserDebt()  becomes meaningless.

Suggestion:

It is recommended to remove the _updateUserDebt()  function call.

Resolution:

This issue has been fixed. The client removed the _updateUserDebt()  update.

40/44



VAL-11 Incorrect Withdraw Event Logs Due to Reset User Data

Severity: Minor

Status: Fixed

Code Location:

contracts/Validator.sol#333

Descriptions:

        deletedelete userInfo userInfo[[msgmsg..sendersender]];;

        _updateUserDebt_updateUserDebt((useruser));;

        emit emit WithdrawWithdraw((msgmsg..sendersender,, user user..amountamount));;

In the withdraw  function, delete userInfo[msg.sender] resets userinfo before the Withdraw

event is emitted. As a result, the event logs user.amount as 0, which is incorrect and does

not reflect the actual withdrawn amount.

Suggestion:

Emit the Withdraw event before resetting userInfo[msg.sender]  to ensure the correct

user.amount is logged.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

41/44



VAL-12 Mismatch Between MAX_LOCK  Value and Commented
Description of Lock Duration

Severity: Informational

Status: Fixed

Code Location:

contracts/Validator.sol#50

Descriptions:

In the Validator contract, the constant MAX_LOCK is defined as follows:

uint256 uint256 publicpublic constant  constant MAX_LOCKMAX_LOCK  ==  1456014560;;        // Maximum lock duration (209 weeks - 1// Maximum lock duration (209 weeks - 1  
second)second)

However, the value 14560 does not match the commented description "Maximum lock

duration (209 weeks - 1 second)."

Suggestion:

To avoid potential confusion, please update the comment to match the intended

MAX_LOCK  value.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

42/44



Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

43/44



Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

44/44


	586_page1.pdf
	586_page2.pdf

