
Audit Report

Thu Nov 28 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Lumoz

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Lumoz Audit Report

1 Executive Summary

1.1 Project Information

Description The Lumoz Protocol, as a globally distributed modular
computing protocol, offering a powerful, secure, and flexible
computing platform for users worldwide

Type Infra

Auditors ScaleBit

Timeline Tue Nov 19 2024 - Thu Nov 28 2024

Languages Solidity

Platform Arbitrum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Lumoz-protocol/Lumoz-protocol-
contracts
https://github.com/Lumoz-protocol/Lumoz-zkProver-
contracts
https://github.com/Lumoz-protocol/Lumoz-zkVerifier-
contracts

Commits https://github.com/Lumoz-protocol/Lumoz-protocol-
contracts:

4dcbed11578e541d01983df674b6cd3c987e481f
636be6d26c68d042119ab7c4c676e540afb56a25

https://github.com/Lumoz-protocol/Lumoz-zkProver-
contracts:

f4a9a8e95a0a48c93f0ffb8590a7a5b961e3197c

1/25

https://github.com/Lumoz-protocol/Lumoz-protocol-contracts
https://github.com/Lumoz-protocol/Lumoz-protocol-contracts
https://github.com/Lumoz-protocol/Lumoz-zkProver-contracts
https://github.com/Lumoz-protocol/Lumoz-zkProver-contracts
https://github.com/Lumoz-protocol/Lumoz-zkVerifier-contracts
https://github.com/Lumoz-protocol/Lumoz-zkVerifier-contracts
https://github.com/Lumoz-protocol/Lumoz-protocol-contracts/tree/4dcbed11578e541d01983df674b6cd3c987e481f
https://github.com/Lumoz-protocol/Lumoz-protocol-contracts/tree/636be6d26c68d042119ab7c4c676e540afb56a25
https://github.com/Lumoz-protocol/Lumoz-zkProver-contracts/tree/f4a9a8e95a0a48c93f0ffb8590a7a5b961e3197c

https://github.com/Lumoz-protocol/Lumoz-zkVerifier-
contracts:

4680f9ef1621c3f099dc484cc7bfcca4c6158020
ca304d3513a64deebc50bf36a85d92c264531fe6
5a65a761c9c45d6405d46c8b42128a912124f444

2/25

https://github.com/Lumoz-protocol/Lumoz-zkVerifier-contracts/tree/4680f9ef1621c3f099dc484cc7bfcca4c6158020
https://github.com/Lumoz-protocol/Lumoz-zkVerifier-contracts/tree/ca304d3513a64deebc50bf36a85d92c264531fe6
https://github.com/Lumoz-protocol/Lumoz-zkVerifier-contracts/tree/5a65a761c9c45d6405d46c8b42128a912124f444

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

LOGCC contracts/LumozOGClaimContract.
sol

a46c6589ad56541a16bde19f1fa9c
88b94631fd6

LTA contracts/LumozTokenAirdrop.sol 44ce927cf1b8575e10eced502e1e2
95d2bf89c2a

LOGA contracts/LumozOGAirdrop.sol 28ebac98d2e9411a658e9295e049
9cf5b49bbca6

UTI contracts/util.sol 3dc2cd4c3080da8b3af57dc59ef40
09d89c9c1fb

LOGCC1 contracts/LumozOGConvertContra
ct.sol

7c2518b08d501e5fb21b9c9e499b
4fe332dada45

LOGNFT contracts/LumozOGNFT.sol 4968b0e763697df8fd8ea128dc317
b875fb215c2

LBA contracts/LumozBaseAirdrop.sol 2a88912863b8b7ae45f69652b602
41df6f3b1c1f

ZKPP contracts/ZKProverProtocol.sol 80da513ea47e7cf0e3d2a60a14556
6e42615a7ff

EMOZ contracts/esMOZ.sol e2c04dddafa0b6816c7f923645c45
b0693eecab5

ZVM contracts/node_manager/zkVerifier
sMulticall.sol

6fdb2fcbb84436ed2a390a9d5659c
7181521e087

NMA contracts/node_manager/NodeMa
nager.sol

e8414971cdbe0b992e79731455db
c1ecd8e96588

3/25

STR contracts/node_manager/StakedTr
acker.sol

c7d91d2486f9641a6d7017092e00
12f36b200116

NFA contracts/node_manager/NodeFac
tory.sol

0db8867c30f3946f8ac9ae8042f933
768f559115

NPD contracts/node_manager/NodePro
xyDeployer.sol

766005bd3f56bf5aff1ae23cbe764
bc23e582cd1

MAT contracts/node_manager/math.sol fb4cc0e4e9d2c3084abe70e712d3c
37384e8aa38

NBE contracts/node_manager/NodeBea
con.sol

31b4816630d250f78f80bd9eeffafa
2b6f3a61d9

ZKVNP contracts/ZKVerifierNodeProtocol.
sol

aac13c78ea6a2ed71c1bc31f8dd59
e89db2e220d

ILOGNFT contracts/interfaces/ILumozOGNF
T.sol

4004e1d192db6a900f46e2d3683d
962a999ad850

ITA contracts/interfaces/ITask.sol b8f3ec4f18faf582c2f94e52bb3150
7e98a3fd36

LCC contracts/LicenseClaimContract.sol 831ce10f0192569616f679d858302
df81b553797

TMA contracts/task/TaskManager.sol fe4ffed34af0c514fa73130bbe3f8d
b3e9a07f2f

NTA contracts/task/NormalTask.sol 0f1acb144d9772c8aee1e0f78dcab
a9fa3acb549

NLI contracts/NodeLicense.sol 673d51aaae84ea760ca03504b2bf
3acdfaad7cdc

4/25

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 10 10 0

Informational 2 2 0

Minor 2 2 0

Medium 4 4 0

Major 2 2 0

Critical 0 0 0

5/25

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

6/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/25

2 Summary

This report has been commissioned by Lumoz to identify any potential issues and
vulnerabilities in the source code of the Lumoz smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 10 issues of varying severity, listed below.

ID Title Severity Status

EMO-1 Incorrect Usage of
_pauseConvertToMOZ in
convertToMOZ Function

Medium Fixed

EMO-2 Potential Array Out-of-Bounds
Access

Minor Fixed

LBA-1 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

LCC-1 Signature Replay Attack Major Fixed

LOG-1 Missing disableInitializers Call in
Proxy Upgradeable Contract
Constructor

Medium Fixed

LOG-2 Logical Flaw in Blacklist Check for
LumozOGNFT Contract

Medium Fixed

LTA-1 Use safeTransfer() instead of
transfer()

Major Fixed

LTA-2 Redundant Address Validation in
claims Function

Informational Fixed

8/25

NFA-1 Missing Return Value Check Minor Fixed

LOG1-1 Incorrect Order of Validation
Conditions in claim Function

Informational Fixed

9/25

3 Participant Process

Here are the relevant actors with their respective abilities within the Lumoz Smart Contract :
Admin

setProposalAuthority : Transfers ProposalAuthority to another address.

setReviewAuthority : Transfers ReviewAuthority to another address.

changeStatus : Enables or disables a specific contract functionality.

updateVerifier : Updates the verifier's address.

updateVerifierRole : Grants or revokes the verifier role for a specific address.

updateMaxClaimedCount : Updates the maximum tokens claimable per transaction.

updateMaxBurnCount : Updates the maximum tokens burnable per transaction.

updateTokenAddress : Updates the token contract address.

updateNodeLicenseAddress : Updates the Node License contract address.

updateSignatureInterval : Updates the validity interval for signatures.

setBaseURI : Sets the base URI for NFTs.

pause : Pauses the contract.

unpause : Resumes the contract.

enableNode : Enables node-related functionality.

changeUpdateSharesPendingPeriod : Updates the delay period for pending share

updates.

initShares : Initializes the share distribution.

updateShares : Updates the share distribution configuration.

updateMetadata : Updates metadata and social details.

updateDelegateOwner : Updates the delegate owner.

addToWhitelist : Adds an address to the whitelist.

removeFromWhitelist : Removes an address from the whitelist.

10/25

changeRedemptionStatus : Enables or disables the redemption process.

changeConvertToMOZStatus : Enables or disables the conversion from esMOZ to

MOZ .

updateFoundationBasePoints : Updates the foundation's base points for esMOZ .

setOGAddress : Sets the OG token contract address.

closeContract : Closes the contract.

setRewardPerVerifytask : Updates the reward per verification task.

updateMaxStakeEsMOZ : Updates the maximum stakable amount of esMOZ .

updateMaxStakeLicenseNum : Updates the maximum stakable number of Licenses.

updateStakingTier : Updates the threshold and boost factor of a staking tier.

addStakingTier : Adds a new staking tier.

removeStakingTier : Removes an existing staking tier.

safeMint : Safely mints a token to a specified address.

mint : Mints a token to a specified address.

batchMint : Mints multiple tokens to multiple addresses.

burn : Burns a specified token.

User

claim : Claims rewards or tokens using provided data and signatures.

convert : Converts tokens by burning them.

createSingleNode : Creates a node with specified licenses, shares, and metadata.

stakeLicenses : Stakes Licenses.

unstakeLicenses : Unstakes Licenses.

stakeEsMOZ : Stakes esMOZ tokens.

unstakeEsMOZ : Unstakes esMOZ tokens.

stakeMOZ : Converts MOZ tokens to esMOZ and stakes them.

claim : Claims rewards for a user.

11/25

claimForOwner : Claims rewards on behalf of the owner.

startRedemption : Starts the esMOZ redemption process.

cancelRedemption : Cancels an ongoing redemption process.

completeRedemption : Completes the esMOZ redemption process.

convertToEsMOZ : Converts MOZ tokens to esMOZ .

submitMultipleVerifications : Submits multiple verification tasks.

claimMultipleRewards : Claims multiple rewards for verification tasks.

convertToMOZ : Converts esMOZ tokens and burns OG NFTs to redeem MOZ .

12/25

4 Findings

EMO-1 Incorrect Usage of _pauseConvertToMOZ in
convertToMOZ Function

Severity: Medium

Status: Fixed

Code Location:

contracts/esMOZ.sol#304

Descriptions:

In convertToMOZ function, the variable _pauseConvertToMOZ is used in a manner

inconsistent with its intended purpose.

The naming of _pauseConvertToMOZ implies that it is a flag indicating whether the "convert

to MOZ" feature is paused.

However, the require statement:

functionfunction convertToMOZconvertToMOZ((uint256uint256[[]] memory _tokenIDs memory _tokenIDs)) publicpublic {{
 requirerequire((_pauseConvertToMOZ_pauseConvertToMOZ,, "Convert is currently inactive""Convert is currently inactive"));;
 //...////...//
}}

allows execution when _pauseConvertToMOZ == true , which contradicts the expected

behavior of a "pause"

Suggestion:

Update the require condition to ensure that the function executes only when

_pauseConvertToMOZ is false.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/25

EMO-2 Potential Array Out-of-Bounds Access

Severity: Minor

Status: Fixed

Code Location:

contracts/esMOZ.sol#200,220

Descriptions:

In the cancelRedemption and completeRedemption functions:

 requirerequire((_redemptionActive_redemptionActive,, "Redemption is currently inactive""Redemption is currently inactive"));;
 RedemptionRequestExtRedemptionRequestExt storage request storage request == _extRedemptionRequests _extRedemptionRequests[[msgmsg..sendersender]]
[[indexindex]];;

This access could cause an array out-of-bounds error if index exceeds the array length.

Suggestion:

Add a check to ensure that the index is within bounds before accessing the array.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/25

LBA-1 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

contracts/LumozBaseAirdrop.sol#8

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. Below is the official documentation explanation from OpenZeppelin：

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

The LumozBaseAirdrop contract inherits from the OwnableUpgradeable contract.

contract contract LumozBaseAirdropLumozBaseAirdrop is is OwnableUpgradeableOwnableUpgradeable,, PausableUpgradeablePausableUpgradeable {{

In this contract, transferring ownership is a single-step process, which poses the

aforementioned risk. https://github.com/OpenZeppelin/openzeppelin-contracts-

upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118

Suggestion:

It is recommended to use the Ownable2StepUpgradeable contract.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/25

https://docs.openzeppelin.com/contracts/4.x/api/access
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118

LCC-1 Signature Replay Attack

Severity: Major

Status: Fixed

Code Location:

contracts/LicenseClaimContract.sol#67-91

Descriptions:

This claim() function enables users to claim NFT by providing required data and valid

signatures. The issue here is that if a user has a valid signature, a malicious attacker can

construct arrays with identical recordIndex , receiver , and claimCount values as function

parameters and pass them to the claim() function. In this case,

SignatureChecker.isValidSignatureNow() will validate the signature successfully each time.

As a result, the attacker could ultimately mint multiple NFTs through

NodeLicense(nodeLicenseAddress).batchMint() .

functionfunction claimclaim((uint256uint256[[]] memory recordIndexes memory recordIndexes,, address address[[]] memory receivers memory receivers,, uint256 uint256[[]]
memory claimCountsmemory claimCounts,, bytes bytes[[]] memory signatures memory signatures)) publicpublic payable payable {{
 requirerequire((!!isStopisStop,, "Contract closed""Contract closed"));;
 uint256 _timestamp uint256 _timestamp == block block..timestamptimestamp;;
 _timestamp _timestamp == _timestamp _timestamp -- _timestamp _timestamp %% signatureInterval signatureInterval;;

 requirerequire((recordIndexesrecordIndexes..lengthlength ==== receivers receivers..lengthlength,, 'Array Mismatch''Array Mismatch'));;
 requirerequire((claimCountsclaimCounts..lengthlength ==== receivers receivers..lengthlength,, 'Array Mismatch''Array Mismatch'));;
 requirerequire((signaturessignatures..lengthlength ==== receivers receivers..lengthlength,, 'Array Mismatch''Array Mismatch'));;
 uint256 totalClaimedCount uint256 totalClaimedCount == 00;;
 forfor ((uint i uint i == 00;; i i << recordIndexes recordIndexes..lengthlength;; i i++++)) {{
 uint256 recordIndex uint256 recordIndex == recordIndexes recordIndexes[[ii]];;
 address receiver address receiver == receivers receivers[[ii]];;
 uint256 claimCount uint256 claimCount == claimCounts claimCounts[[ii]];;
 bytes32 messageHash bytes32 messageHash == getMessageHashgetMessageHash((getMessagegetMessage((msgmsg..sendersender,, recordIndex recordIndex,,
receiverreceiver,, claimCount claimCount,, _timestamp _timestamp))));;
 requirerequire((SignatureCheckerSignatureChecker..isValidSignatureNowisValidSignatureNow((verifierverifier,, messageHash messageHash,,
signaturessignatures[[ii]])),, "invalid signature""invalid signature"));;
 totalClaimedCount totalClaimedCount +=+= claimCount claimCount;;
 requirerequire((totalClaimedCount totalClaimedCount <=<= maxClaimedCount maxClaimedCount,, 'Total Claimed Counts Over'Total Claimed Counts Over
maxClaimedCount'maxClaimedCount'));;

16/25

 claimedRecordsclaimedRecords[[msgmsg..sendersender]]..pushpush((ClaimedRecordClaimedRecord((recordIndexrecordIndex,, msg msg..sendersender,,
receiverreceiver,, claimCount claimCount,, block block..timestamptimestamp))));;
 emit emit ClaimedInfoClaimedInfo((recordIndexrecordIndex,, msg msg..sendersender,, receiver receiver,, claimCount claimCount,,
blockblock..timestamptimestamp));;
 }}

 NodeLicenseNodeLicense((nodeLicenseAddressnodeLicenseAddress))..batchMintbatchMint((receiversreceivers,, claimCounts claimCounts));;
 }}

Suggestion:

It is recommended to mark signatures that have already been used.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/25

LOG-1 Missing disableInitializers Call in Proxy Upgradeable
Contract Constructor

Severity: Medium

Status: Fixed

Code Location:

contracts/LumozOGNFT.sol#40

Descriptions:

The protocol does not call disableInitializers in the constructor of the logic contract during

initialization. This oversight introduces a severe risk, allowing potential attackers to initialize

the implementation contract itself.

 constructorconstructor((uint256 _maxuint256 _max)) {{
 maxSupplyPerLevel maxSupplyPerLevel == _max _max;;
 }}

Suggestion:

It is recommended to include a call to disableInitializers in the constructor of the logic

contract as recommended by OpenZeppelin.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/25

LOG-2 Logical Flaw in Blacklist Check for LumozOGNFT
Contract

Severity: Medium

Status: Fixed

Code Location:

contracts/LumozOGNFT.sol#70,76,82

Descriptions:

In the LumozOGNFT contract, there is a logical flaw in the implementation of the blacklist

validation. The current:

requirerequire((!!isBlackListedisBlackListed[[msgmsg..sendersender]] |||| !!isBlackListedisBlackListed[[fromfrom]]));;

Suggestion:

Update the blacklist check to ensure that both msg.sender and from are not blacklisted.

requirerequire((!!isBlackListedisBlackListed[[msgmsg..sendersender]] &&&& !!isBlackListedisBlackListed[[fromfrom]]));;

This ensures that any transaction involving a blacklisted address is appropriately restricted,

maintaining the integrity of the blacklist functionality.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/25

LTA-1 Use safeTransfer() instead of transfer()

Severity: Major

Status: Fixed

Code Location:

contracts/LumozTokenAirdrop.sol#24

Descriptions:

In the claim() function, the protocol calls ERC20Upgradeable(tokenAddress).transfer() to

transfer tokens to msg.sender and expects a bool return value.

bool bResult bool bResult == ERC20UpgradeableERC20Upgradeable((tokenAddresstokenAddress))..transfertransfer((msgmsg..sendersender,, amount amount));;
 requirerequire((bResultbResult,, 'transfer failed.''transfer failed.'));;

The issue is that some tokens, such as USDT, are not standard ERC-20 implementations and

do not return a bool value. As a result, expecting a bool here can lead to a denial of

service (DoS), preventing users from claiming their assets.

Suggestion:

It is recommended to use safeTransfer() instead of transfer() .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/25

LTA-2 Redundant Address Validation in claims Function

Severity: Informational

Status: Fixed

Code Location:

contracts/LumozTokenAirdrop.sol#36

Descriptions:

In the claims function of the LumozTokenAirdrop contract, the validation

onlyValidAddress(msg.sender) is unnecessary.

The likelihood of msg.sender being an invalid addres 0x0) is negligible, and the function

already includes the following validation:

requirerequire((msgmsg..sendersender ==== reviewAuthority reviewAuthority));;

Suggestion:

Consider removing the ValidAddress(msg.sender) check to simplify the function logic.

The existing require(msg.sender == reviewAuthority) validation is adequate for ensuring the

correctness and security of the caller.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/25

NFA-1 Missing Return Value Check

Severity: Minor

Status: Fixed

Code Location:

contracts/node_manager/NodeFactory.sol#193

Descriptions:

In the stakeEsMOZ() function, the protocol calls

esMOZ(payable(esMOZAddress)).transferFrom() to transfer funds from msg.sender .

 // node stake esMOZ// node stake esMOZ
 ZKVerifierNodeProtocolZKVerifierNodeProtocol((nodeProtocolnodeProtocol))..stakeEsMOZstakeEsMOZ((_nodeManager_nodeManager,, _amount _amount));;

 esMOZesMOZ((payablepayable((esMOZAddressesMOZAddress))))..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, _amount _amount));;
 NodeManagerNodeManager nodeManager nodeManager == NodeManagerNodeManager((_nodeManager_nodeManager));;
 nodeManagernodeManager..stakeEsMOZstakeEsMOZ((msgmsg..sendersender,, _amount _amount));;

According to the EIP-20 standard, the return value of transfer() and transferFrom()

methods should be checked.

https://eips.ethereum.org/EIPS/eip-20 However, the protocol currently does not perform

this check.

Suggestion:

It is recommended to implement a check for the return value of transfer() and

transferFrom() to ensure the transfer was successful.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/25

https://eips.ethereum.org/EIPS/eip-20

LOG1-1 Incorrect Order of Validation Conditions in claim
Function

Severity: Informational

Status: Fixed

Code Location:

contracts/LumozOGAirdrop.sol#12,13

Descriptions:

In the claim function of the LumozOGAirdrop and LumozTokenAirdrop contracts, the

following validation conditions:

 requirerequire((!!isClaimedisClaimed((rootIndexrootIndex,, index index)),, 'cl:already claimed''cl:already claimed'));;
 requirerequire((rootIndex rootIndex <=<= rootCounts rootCounts,, 'Invalid Root Index''Invalid Root Index'));;

are implemented in an incorrect order. If rootIndex > rootCounts , may execute

unnecessary logic.

Suggestion:

Swap the order of the require conditions to ensure that the rootIndex validation is executed

first, as it is a prerequisite for the validity of subsequent checks. The revised order should be:

requirerequire((rootIndex rootIndex <=<= rootCounts rootCounts,, 'Invalid Root Index''Invalid Root Index'));;
requirerequire((!!isClaimedisClaimed((rootIndexrootIndex,, index index)),, 'cl:already claimed''cl:already claimed'));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/25

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

25/25

	605_page1.pdf
	605_page2.pdf

