
Audit Report

Mon Jul 01 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Lorenzo Protocol

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Lorenzo Protocol Audit Report

1 Executive Summary

1.1 Project Information

Description BTC Liquid staking platform

Type DeFi

Auditors ScaleBit

Timeline Wed Jun 19 2024 - Sun Jun 30 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Lorenzo-Protocol/Lorenzo_StakePlan

Commits 516e2996cb6dd3d03f26abf3761e91d55104ee58
1a6dbbe19b0d655733fc1162804c521ec1e9ea2b
9c296bee9e0c37bbe825c4c0aaed0d57383332a7

1/27

https://github.com/Lorenzo-Protocol/Lorenzo_StakePlan
https://github.com/Lorenzo-Protocol/Lorenzo_StakePlan/tree/516e2996cb6dd3d03f26abf3761e91d55104ee58
https://github.com/Lorenzo-Protocol/Lorenzo_StakePlan/tree/1a6dbbe19b0d655733fc1162804c521ec1e9ea2b
https://github.com/Lorenzo-Protocol/Lorenzo_StakePlan/tree/9c296bee9e0c37bbe825c4c0aaed0d57383332a7

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

DTY contracts/libraries/DataTypes.sol a94bd34d049a7e08963bd32b757f
1a184a7d4c10

BRI contracts/stBTCBridge/Bridge.sol df5fff878cbbb047aa77028d1c5533
9118e75517

SBTCMA contracts/stBTC/stBTCMintAuthorit
y.sol

e260830f14aefaa6c66a47340402f4
aeec947ebb

SBTC contracts/stBTC/stBTC.sol 788898e892a63ff279e3806682b46
ab22d19f445

ISPH contracts/interfaces/IStakePlanHu
b.sol

f67699c0bdcea35827ca3d14840f6
250f6c22241

IERC2MB contracts/interfaces/IERC20MintBu
rnable.sol

74a2d7a2dc889a0074493b083c2b
b62642ed3350

ISP contracts/interfaces/IStakePlan.sol a679e9df84c3b3309cbc6bc622a54
20b72b7a8db

IBTCMA contracts/interfaces/IstBTCMintAut
hority.sol

ba571f9965af7ffea9fdde53bfd66c
8523c92692

BST contracts/storage/BridgeStorage.s
ol

ef6a9888ffc12b99539a7c0d233dc
85b25940d33

SPHS contracts/storage/StakePlanHubSt
orage.sol

f9d49c5bc2d4105c9f22403c7b54f4
56c0160b8a

SPH contracts/StakePlan/StakePlanHub.
sol

08a627defcc5a123543956ac7ea40
644996228cd

2/27

SPL contracts/StakePlan/StakePlan.sol ed4d818243abc6313e4116d47d03
9e87d7e31f4f

3/27

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 13 5 8

Informational 5 0 5

Minor 4 3 1

Medium 3 2 1

Major 1 0 1

Critical 0 0 0

4/27

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/27

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/27

2 Summary

This report has been commissioned by Lorenzo Protocol to identify any potential issues and
vulnerabilities in the source code of the Lorenzo Protocol smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 13 issues of varying severity, listed below.

ID Title Severity Status

BRI-1 Lack of Proof of Transaction Medium Acknowledged

BRI-2 Missing receive Function Medium Fixed

BRI-3 setSupportChainId Function
Setting Risks

Informational Acknowledged

SBT-1 revokeRole Admin Informational Acknowledged

SPH-1 Centralization Risk Major Acknowledged

SPH-2 Expiration Limit Conflict Medium Fixed

SPH-3 Block Time Changes Minor Acknowledged

SPH-4 claimStakeStBTC Function Missing
Checks

Minor Fixed

SPH-5 Repeat Add Informational Acknowledged

SPH-6 The Contract Address Can Be
Deleted Before Withdrawal

Informational Acknowledged

SPH-7 Cannot Set stBTC to
_btcContractAddressSet

Informational Acknowledged

7/27

SPL-1 Lack of Events Emit Minor Fixed

SPL-2 Reentrancy Risk Minor Fixed

8/27

3 Participant Process

Here are the relevant actors with their respective abilities within the Lorenzo Protocol Smart
Contract :

contracts/StakePlan/StakePlan.sol
Deployer

Deployer can set the addresses of STAKE_PLAN_HUB and ST_BTC through the

constructor function.

CreateNewPlanData will be initialized through the initialize function when creating in

proxy clone mode.

onlyHub

STAKE_PLAN_HUB can reset _name , _symbol , _descUri , _agentId ,

_subscriptionStartTime , _subscriptionEndTime , _endTime through the

reNewStakePlan function.

STAKE_PLAN_HUB can record the user's stake amount and the total stake amount

within the time limit through the recordStakeStBTC function.

STAKE_PLAN_HUB can claim ST_BTC to the specified staker address through the

claimStakeStBTC function.

STAKE_PLAN_HUB can record the amount of staker's stake through the

recordStakeStBTC function.

STAKE_PLAN_HUB can withdraw the balance of btcContractAddress in the contract

to the withdrawer address through the withdrawBTC function.

STAKE_PLAN_HUB can open the claiming state through the openClaimStBTC

function, and it cannot be closed after opening.

contracts/StakePlan/StakePlanHub.sol
Deployer

After deployment, you need to call the initialize function to initialize Pausable to

implement the pause function, as well as the _governance , _stakePlanImpl ,

_lorenzoAdmin and _stBTCMintAuthorityAddress addresses.

gov

9/27

_governance can set the _lorenzoAdmin address through the setLorenzoAdmin

function.

_governance can set _stBTCMintAuthorityAddress address through

setStBTCMintAuthorityAddress function.

_governance can set _governance address through setGovernance function.

_governance can add _btcContractAddress address through

addSupportBtcContractAddress function.

_governance can remove _btcContractAddress address through

removeSupportBtcContractAddress function.

_governance can withdraw the balance of btcContractAddress in

derivedStakePlanAddr contract through withdrawBTC function.

LorenzoAdmin

LorenzoAdmin can suspend the contract through adminPauseBridge function.

LorenzoAdmin can resume the contract through adminUnpauseBridge function.

LorenzoAdmin can set a new StakePlan through the reNewStakePlan function.

LorenzoAdmin can set the creation of StakePlan and the corresponding

derivedStakePlanAddr contract through the createNewPlan function.

LorenzoAdmin can turn on the claim status switch of derivedStakePlanAddr through

the openClaimStBTC function.

User

User can stake btcContractAddress_ (WBTC/BTCB tokens supported in the whitelist)

token through the stakeBTC2JoinStakePlan function.

User can claim the stBTC obtained after staking through the claimStakeStBTC

function.

contracts/stBTC/stBTC.sol
Deployer

Initialize msg.sender as the contract owner when deploying the contract.

Owner

Owner can set the _minter_contract address through the setNewMinterContract

function.

10/27

onlyMinterContract

_minter_contract can mint stBTC token through the mint function.

contracts/stBTC/stBTCMintAuthority.sol
Deployer

Initialize and specify admin as the contract DEFAULT_ADMIN_ROLE when deploying

the contract, and set _stBTCAddress .

DEFAULT_ADMIN_ROLE

DEFAULT_ADMIN can add MINTER_ROLE by setting the minter address through the

setMinter function.

DEFAULT_ADMIN can remove MINTER_ROLE by setting the minter address through

the removeMinter function.

DEFAULT_ADMIN can add ROLE by setting the minter address through the

grantRole function.

DEFAULT_ADMIN can remove ROLE by setting the minter address through the

revokeRole function.

MINTER_ROLE

Minter can mint stBTC token to the specified receipt address through the mint

function.

contracts/Bridge/Bridge.sol
Deployer

When the contract is deployed, call the initialize function to initialize the specified

owner parameter to the contract Owner address, and set the addresses of

_relayerOrDao , protocolFeeAddress , stBTCMintAuthorityAddress , and initialize the

pause function and reentry modifier, as well as _chainId .

User

User can burn stBTCAddress (stBTC token) or lock the platform token to initiate a

cross-chain event through the burnOrStakeStBtc function.

onlyAuthRelayerOrDaoContract

onlyAuthRelayerOrDaoContract can send platform tokens to the to address or mint

_stBTCMintAuthorityAddress (stBTC) through the mintOrUnstakeStBtc function

Owner

11/27

The Owner can set the cross_chain_fee and stBTCAddress of the chain through the

setSupportChainId function.

The Owner can pause the contract through the adminPauseBridge function.

The Owner can resume the contract through the adminUnpauseBridge function.

The Owner can set the _relayerOrDao address through the changeRelayer function.

The Owner can set the _protocolFeeAddress address through the

changeProtocolFeeAddress function.

12/27

4 Findings

BRI-1 Lack of Proof of Transaction

Severity: Medium

Status: Acknowledged

Code Location:

contracts/stBTCBridge/Bridge.sol#120

Descriptions:

1. In the mintOrUnstakeStBtc function, the onlyAuthRelayerOrDaoContract permission

is called. The function does not prove the source of the transaction. In cross-chain

transactions, if the dao contract address reads the event record, the transaction proof

in the _usedTxid[txHash] variable may be preempted, and it cannot prove the source

of the user's stake in the contract.

2. On the other hand, if it is a non-existent txHash , the default value is false, he can still

check and mint amount of stBTC, which will have certain risks.

 ifif ((_usedTxid_usedTxid[[txHashtxHash]])) {{
 revert revert TxHashAlreadyMintTxHashAlreadyMint(());;
 }}

 _usedTxid_usedTxid[[txHashtxHash]] == truetrue;;

Suggestion:

It is recommended to take mitigation measures.

Resolution:

The client replied that the current stage is centralized and relies on the relayer account

being trustworthy (onlyAuthRelayerOrDaoContract), and there is no need to provide proof

of cross-chain transactions on other chains.

13/27

BRI-2 Missing receive Function

Severity: Medium

Status: Fixed

Code Location:

contracts/stBTCBridge/Bridge.sol

Descriptions:

The Bridge contract lacks a receive function, and all the platform token in the contract rely

on the burnOrStakeStBtc payable function. When liquidity is insufficient, users may not be

able to withdraw funds, and the project party may not be able to transfer liquidity to the

contract.

Suggestion:

It is recommended to confirm the business logic.

Resolution:

Added receive function. When liquidity is insufficient, RelayerOrDao can be added

manually.

14/27

BRI-3 setSupportChainId Function Setting Risks

Severity: Informational

Status: Acknowledged

Code Location:

contracts/stBTCBridge/Bridge.sol#199

Descriptions:

When the Bridge contract is deployed in multiple chains, it is necessary to set the

corresponding chain and the corresponding contract address information through

setSupportChainId . When setting, the other chain also needs to add the same settings for

adaptation. If the address is set incorrectly, the contract may run incorrectly.

Suggestion:

It is recommended to take mitigation measures.

Resolution:

Multi-chain contracts require synchronous cross-setting, and the client has confirmed the

setting risks.

15/27

SBT-1 revokeRole Admin

Severity: Informational

Status: Acknowledged

Code Location:

contracts/stBTC/stBTCMintAuthority.sol

Descriptions:

If there are multiple DEFAULT_ADMIN_ROLE in the stBTCMintAuthority contract, multiple

administrators can delete other administrators' DEFAULT_ADMIN_ROLE through the

revokeRole function.

Suggestion:

It is recommended to take mitigation measures.

Resolution:

The client ensures that there will only be one default administrator with the

DEFAULT_ADMIN_ROLE .

16/27

SPH-1 Centralization Risk

Severity: Major

Status: Acknowledged

Code Location:

contracts/StakePlan/StakePlanHub.sol#190;

contracts/stBTC/stBTC.sol#40;

contracts/stBTC/stBTCMintAuthority.sol#32

Descriptions:

In the current system, administrators have the following primary operational privileges:

1. In the stBTC contract, the owner can set the minter address, and the set minter

address can mint stBTC at will.

 functionfunction mintmint((address receiptaddress receipt,, uint256 amount uint256 amount)) external onlyMinterContract external onlyMinterContract {{
 _mint_mint((receiptreceipt,, amount amount));;
 }}

2. In the stBTCMintAuthority function, admin can set minter through the setMinter

function, and the address with MINTER_ROLE can use the mint function to mint

stBTC at will.

3. The onlyGov permission address can modify the implementation address of the

StakPlan contract. The implementation modified in the future may have certain risks

because the updated address may contain new logical functions that are not within the

audit scope.

4. Bridge Owner can arbitrarily set stBTCAddress in the cross-chain bridge, which may

involve some risks of external address calls.

Suggestion:

It is recommended to use the multi-sig wallets to mitigate the centralized risk.

17/27

SPH-2 Expiration Limit Conflict

Severity: Medium

Status: Fixed

Code Location:

contracts/StakePlan/StakePlanHub.sol#371;

contracts/StakePlan/StakePlan.sol#409

Descriptions:

1. The stakeBTC2JoinStakePlan function in the StakePlanHub contract has no

association with the staking expiration time. When the open state is turned on, users

can continue to stake after the _subscriptionEndTime corresponding to the planID,

and withdrawBTC will withdraw the funds staked after the endtime. Users can stake

and withdraw funds in the same block. After calling stakeBTC2JoinStakePlan , call

claimStakeStBTC immediately, and users between starttime-_subscriptionEndTime

need to lock their positions.

ifif ((blockblock..timestamptimestamp << _subscriptionEndTime _subscriptionEndTime))

2. In the createNewPlan and reNewStakePlan functions, the current time must be less

than subscriptionStartTime , which means that users can participate in staking

between block.timestamp and subscriptionStartTime , and the settlement time is

based on subscriptionEndTime instead of endTime .

Suggestion:

It recommends confirming the business logic and resolving this conflict.

Resolution:

The stake time is limited.

blockblock..timestamptimestamp >> _subscriptionEndTime _subscriptionEndTime||||blockblock..timestamptimestamp << _subscriptionStartTime _subscriptionStartTime

18/27

SPH-3 Block Time Changes

Severity: Minor

Status: Acknowledged

Code Location:

contracts/StakePlan/StakePlanHub.sol#312

Descriptions:

The reNewStakePlan function prevents the modification of the function time by checking

the time when the balance limit can be modified, and there may be malicious funds

transferred into 1 token.

 functionfunction reNewStakePlanreNewStakePlan((
......
 forfor ((uint256 i uint256 i == 00;; i i << _btcContractAddressSet _btcContractAddressSet..lengthlength(());; i i++++)) {{
 uint256 balance uint256 balance == IERC20IERC20((_btcContractAddressSet_btcContractAddressSet..atat((ii))))..balanceOfbalanceOf((
 derivedStakePlanAddrderivedStakePlanAddr
));;
 ifif ((balance balance >> 00)) {{
 revert revert CanNotRenewIfBTCBalanceNotZeroCanNotRenewIfBTCBalanceNotZero(());;
 }}
 }}

Suggestion:

It is recommended to take mitigation measures.

Resolution:

The client confirms that there will be no risk to the client.

19/27

SPH-4 claimStakeStBTC Function Missing Checks

Severity: Minor

Status: Fixed

Code Location:

contracts/StakePlan/StakePlanHub.sol#409

Descriptions:

There is a lack of stakeAmount check in the claimStakeStBTC function, and it will not check

whether it exceeds the user's userStBTCRecord[staker_] . Executing

userStBTCRecord[staker_] -= amount_ will cause an overflow panic.

Suggestion:

It is recommended to check stakeAmount>0 and check userStBTCRecord[staker_] -=

amount_ .

Resolution:

Added check for amount .

 ifif ((
 amount_ amount_ ==== 00 ||||
 amount_ amount_ >> userStBTCRecord userStBTCRecord[[staker_staker_]] ||||
 amount_ amount_ >> totalRaisedStBTC totalRaisedStBTC
)) {{
 revert revert InitParamsInvalidInitParamsInvalid(());;
 }}

20/27

SPH-5 Repeat Add

Severity: Informational

Status: Acknowledged

Code Location:

contracts/StakePlan/StakePlanHub.sol#205

Descriptions:

1. The addSupportBtcContractAddress function can add the same address when adding

btcContractAddress, such as [A,A,A,].

 functionfunction addSupportBtcContractAddressaddSupportBtcContractAddress((
 addressaddress[[]] memory btcContractAddress_ memory btcContractAddress_
)) external onlyGov external onlyGov {{
 forfor ((uint256 i uint256 i == 00;; i i << btcContractAddress_ btcContractAddress_..lengthlength;; i i++++)) {{
 address btcContractAddress address btcContractAddress == btcContractAddress_ btcContractAddress_[[ii]];;
 ifif ((btcContractAddress btcContractAddress ==== addressaddress((00)))) {{
 revert revert InvalidAddressInvalidAddress(());;
 }}
 _btcContractAddressSet_btcContractAddressSet..addadd((btcContractAddressbtcContractAddress));;
 }}
 }}

2. For set type functions such as setLorenzoAdmin , you can set the same address as the

old address.

ifif ((newLorenzoAdmin_ newLorenzoAdmin_ ==== addressaddress((00)))) {{
 revert revert InvalidAddressInvalidAddress(());;
}}

Suggestion:

It is recommended to take mitigation measures.

21/27

SPH-6 The Contract Address Can Be Deleted Before
Withdrawal

Severity: Informational

Status: Acknowledged

Code Location:

contracts/StakePlan/StakePlanHub.sol#243

Descriptions:

The withdrawBTC function relies on _btcContractAddressSet as the token address to

query the balance when called. If onlygov deletes the address through the

removeSupportBtcContractAddress function before the balance is withdrawn, the

withdrawBTC call will fail.

Suggestion:

It is recommended to check the balance before deleting an address.

22/27

SPH-7 Cannot Set stBTC to _btcContractAddressSet

Severity: Informational

Status: Acknowledged

Code Location:

contracts/StakePlan/StakePlanHub.sol#205

Descriptions:

The addSupportBtcContractAddress function can set the stBTC token address to

btcContractAddress_ , and obtain stBTC as the stake token in the stakeBTC2JoinStakePlan

function. If the token is set to stBTC , the contract will mint stBTC tokens, which will cause

infinite Mint and withdrawBTC errors in the execution process.

Suggestion:

It's recommended that you cannot set stBTC as btc Contract Address

23/27

SPL-1 Lack of Events Emit

Severity: Minor

Status: Fixed

Code Location:

contracts/StakePlan/StakePlan.sol#103;

contracts/StakePlan/StakePlanHub.sol#243;

contracts/stBTC/stBTC.sol#30;

contracts/stBTC/stBTCMintAuthority.sol#36,40;

contracts/StakePlan/StakePlanHub.sol#435

Descriptions:

1. The contract lacks appropriate events for monitoring sensitive operations, which could

make it difficult to track sensitive actions or detect potential issues such as

reNewStakePlan , recordStakeStBTC , withdrawBTC , openClaimStBTC ,

setNewMinterContract ,

setMinter , removeMinter , addSupportBtcContractAddress ,

removeSupportBtcContractAddress .

2. derivedStakePlanAddr is not recorded in the _createNewPlan function trigger event.

Although it can be queried through the _stakePlanMap variable, it is still

recommended to add it to track the binding information when the address is created.

Suggestion:

It is recommended to emit events for those important functions and add

derivedCollectionAddr in the event trigger.

Resolution:

The client accepted our suggestion.

24/27

SPL-2 Reentrancy Risk

Severity: Minor

Status: Fixed

Code Location:

contracts/StakePlan/StakePlan.sol#167,147;

contracts/stBTCBridge/Bridge.sol#128,175,178

Descriptions:

In the mintOrUnstakeStBtc , burnOrStakeStBtc and 'withdrawBTC' functions, due to the

unknown token address, there may be a reentrancy risk if the token is callable during a

transfer. Although some functions in the contract address have admin-set token addresses,

there may still be a risk of reentrancy when using safeTransfer or unchecked to addresses.

((bool successbool success,,)) == payablepayable((toto))..callcall{{valuevalue:: amount amount}}((""""));;

Suggestion:

It is recommended to add a no-reentrancy modifier.

Resolution:

Added nonReentrant decorator.

25/27

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

26/27

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

27/27

	423_page1.pdf
	423_page2.pdf

