
Audit Report

Fri Mar 21 2025

contact@bitslab.xyz https://twitter.com/scalebit_

XKilo Token

https://twitter.com/scalebit_
https://www.scalebit.xyz/

XKilo Token Audit Report

1 Executive Summary

1.1 Project Information

Description xKilo is a non-transferable escrowed governance token,
corresponding to staked KiloEx token

Type Dex

Auditors ScaleBit

Timeline Thu Mar 20 2025 - Thu Mar 20 2025

Languages Solidity

Platform Manta

Methods Architecture Review, Unit Testing, Manual Review

1/16

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

KET KiloExToken.sol 9c2c65e16f54cca6442d314334386
2d8d7e57c09

XKD XKiloDividends.sol cdd26966be0fa4c97102d5e2b8dcf
8855d19e345

XKT XKiloToken.sol 77ea19cffcc977c2650cb75c62d8a
235a589d9e0

2/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 2 1

Informational 1 0 1

Minor 1 1 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/16

2 Summary

This report has been commissioned by KiloEx to identify any potential issues and
vulnerabilities in the source code of the XKilo Token smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

XKD-1 Missing Access Control for
addDividendsToPending()

Medium Fixed

XKD-2 Optimizable Code Informational Acknowledged

XKT-1 Fee Evasion Minor Fixed

6/16

3 Participant Process

Here are the relevant actors with their respective abilities within the XKilo Token Smart
Contract :
Admin

The admin can call the updateRedeemSettings function to update redemption

parameters (min/Max redemption ratio, lock-up period, dividend compensation ratio).

The admin can call the updateDividendsAddress function to set or reset the dividend

distribution contract address.

The admin can call the updateDeallocationFee function to adjust the discharge rate

for specified purpose contracts.

The admin can call the updateTransferWhitelist function to manage transfer whitelists

to allow/disable transfer xKILO to specific addresses..

The admin can call the updateStartTime function to set the start time of the current

cycle to the current block time minus 7 days.

The admin can call the emergencyWithdraw/emergencyWithdrawAll function to

emergency withdrawal of KILO tokens/All tokens in the contract.

The admin can call the enableDistributedToken function to enable tokens as

distributable dividend tokens to be added to the distribution list..

The admin can call the disableDistributedToken function to disables the dividend

distribution function of the token, stopping its subsequent distribution.

The admin can call the updateCycleDividendsPercent function to updates the

percentage of cycle allocation for specified tokens.

The admin can call the removeTokenFromDistributedTokens function to removes

tokens from the allocation list.

User

Users can call the allocate function to assigns the user's xKILO to the specified

contract.

Users can call the deallocate function to unassign xKILO from the contract.

Users can call the harvestDividends function to withdraw the specified token dividend

income accumulated by the user.

7/16

Users can call the harvestAllDividends function to withdraw the dividend income of all

allocated tokens at one time.

Users can call the convert/convertTo function to Convert KILO to xKILO token /

converts KILO to xKILO and sends it directly to the specified address.

Users can call the redeem function to To initiate a request to redeem xKILO as KILO,

specify a lockup period.

Users can call the finalizeRedeem function to Complete the redemption at the end of

the lock-up period, acquire KILO and release the dividend distribution.

Users can call the cancelRedeem function to Cancels the outstanding redemption

request and retrieves the locked xKILO.

Users can call the updateRedeemDividendsAddress function to Updates dividends

address for an existing active redeeming process.

8/16

4 Findings

XKD-1 Missing Access Control for addDividendsToPending()

Severity: Medium

Status: Fixed

Code Location:

XKiloDividends.sol#259-269

Descriptions:

In the file XKiloDividends.sol , the permission of the addDividendstopending function is

missing. Any user can call the function to send tokens to the pool to be allocated

 /**/**
 * * @dev@dev Transfers the given amount of token from caller to pendingAmount Transfers the given amount of token from caller to pendingAmount
 **
 * Must only be called by a trustable address* Must only be called by a trustable address
 //
 functionfunction addDividendsToPendingaddDividendsToPending((address tokenaddress token,, uint256 amount uint256 amount)) external override external override
nonReentrant nonReentrant {{
 uint256 prevTokenBalance uint256 prevTokenBalance == IERC20UpgradeableIERC20Upgradeable((tokentoken))..balanceOfbalanceOf((addressaddress((thisthis))));;
 DividendsInfoDividendsInfo storage dividendsInfo_ storage dividendsInfo_ == dividendsInfo dividendsInfo[[tokentoken]];;
 IERC20UpgradeableIERC20Upgradeable((tokentoken))..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 // handle tokens with transfer tax// handle tokens with transfer tax
 uint256 receivedAmount uint256 receivedAmount ==
IERC20UpgradeableIERC20Upgradeable((tokentoken))..balanceOfbalanceOf((addressaddress((thisthis))))..subsub((prevTokenBalanceprevTokenBalance));;
 dividendsInfo_dividendsInfo_..pendingAmountpendingAmount ==
dividendsInfo_dividendsInfo_..pendingAmountpendingAmount..addadd((receivedAmountreceivedAmount));;

 emit emit DividendsAddedToPendingDividendsAddedToPending((tokentoken,, receivedAmount receivedAmount,, totalAllocation totalAllocation,, sid sid++++));;
 }}

Since any address can be called, there is an attack scenario at this time, the attacker creates

a malicious token and calls the addDividendsToPending function to add the malicious

token to the pool to be allocated. If the manager mistakenly calls the

enableDistributedToken function to add the token, The attacker can manipulate the

balanceOf function of the malicious token to control the size of the

9/16

dividendsInfo_.pendingAmount parameter to affect the dividend amount. In this way, the

user receives a large number of malicious tokens and the credibility of the contract is

damaged

Suggestion:

Authenticate the function addDividendsToPending, allowing only trusted addresses to make

function calls

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/16

XKD-2 Optimizable Code

Severity: Informational

Status: Acknowledged

Code Location:

XKiloDividends.sol#10;

XKiloToken.sol#11

Descriptions:

Prior to Solidity 0.8.0 , variables could overflow if mathematical operations resulted in

values greater than what the variable could hold. However, this should not be done in

Solidity 0.8.0 or later * because the compiler adds a built-in overflow check behind the

scenes. Therefore, using the SafeMath library for basic arithmetic operations makes the

code unreadable and inefficient, without additional security gains.

Suggestion:

Reduce excess code for optimization

11/16

XKT-1 Fee Evasion

Severity: Minor

Status: Fixed

Code Location:

XKiloToken.sol#443-448

Descriptions:

In the contract file XKiloToken.sol , the function deallocate(...) And

deallocateFromUsage(...) There is a fee bypass vulnerability in the 'xKILO' function, which is

used to remove the user's allocated xkilo tokens from the specified usage contract and

charge a certain percentage of the fee, which may cause the contract to charge zero when

the caller controls the parameter amount to call the function

functionfunction _deallocate_deallocate((address userAddressaddress userAddress,, address usageAddress address usageAddress,, uint256 amount uint256 amount))
internal internal {{
 requirerequire((amount amount >> 00,, "deallocate: amount cannot be null""deallocate: amount cannot be null"));;

 // check if there is enough allocated xKILO to this usage to deallocate// check if there is enough allocated xKILO to this usage to deallocate
 uint256 allocatedAmount uint256 allocatedAmount == usageAllocations usageAllocations[[userAddressuserAddress]][[usageAddressusageAddress]];;
 requirerequire((allocatedAmount allocatedAmount >=>= amount amount,, "deallocate: non authorized amount""deallocate: non authorized amount"));;

 // remove deallocated amount from usage's allocation// remove deallocated amount from usage's allocation
 usageAllocationsusageAllocations[[userAddressuserAddress]][[usageAddressusageAddress]] == allocatedAmount allocatedAmount..subsub((amountamount));;

 uint256 deallocationFeeAmount uint256 deallocationFeeAmount ==
amountamount..mulmul((usagesDeallocationFeeusagesDeallocationFee[[usageAddressusageAddress]]))..divdiv((1000010000));;

 // adjust user's xKILO balances// adjust user's xKILO balances
 XKiloBalanceXKiloBalance storage balance storage balance == xKiloBalances xKiloBalances[[userAddressuserAddress]];;
 balancebalance..allocatedAmountallocatedAmount == balance balance..allocatedAmountallocatedAmount..subsub((amountamount));;
 _transfer_transfer((addressaddress((thisthis)),, userAddress userAddress,, amount amount..subsub((deallocationFeeAmountdeallocationFeeAmount))));;
 // burn corresponding KILO and XKILO// burn corresponding KILO and XKILO
 kiloExOftTokenkiloExOftToken..burnburn((deallocationFeeAmountdeallocationFeeAmount));;

 _burn_burn((addressaddress((thisthis)),, deallocationFeeAmount deallocationFeeAmount));;
 emit emit DeallocateDeallocate((userAddressuserAddress,, usageAddress usageAddress,, amount amount,, deallocationFeeAmount deallocationFeeAmount));;
}}

12/16

The cause of the vulnerability occurs in the calculation of the deallocationFeeAmount

parameter

uint256 deallocationFeeAmount uint256 deallocationFeeAmount ==
amountamount..mulmul((usagesDeallocationFeeusagesDeallocationFee[[usageAddressusageAddress]]))..divdiv((1000010000));;

Suppose the function updateDeallocationFee is set to 0.5% and the parameter

usagesDeallocationFee[usageAddress] is set to 50. When the value of amount is 199, the

product is less than 10000, then deallocationFeeAmount is calculated to 0, the user will

bypass the fee to withdraw all, in certain cases the user can loop through the control

parameter amount to withdraw more tokens.

For example, in the following test, different users withdraw 199 * 10000 tokens at the same

time, and more tokens will be extracted by bypassing fees through the vulnerability

Suggestion:

13/16

The function deallocationFeeAmount value is detected and the transaction is aborted when

the value is 0

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	811_page1.pdf
	811_page2.pdf

