
Audit Report

Mon Jul 21 2025

contact@bitslab.xyz https://twitter.com/scalebit_

ShareX

https://twitter.com/scalebit_
https://www.scalebit.xyz/

ShareX Audit Report

1 Executive Summary

1.1 Project Information

Description ShareX is building the Web3 Consumer and Financial Layer for
the sharing economy. By integrating IoT sharing service
terminals with the Deshare Protocol, RWA solutions, and
crypto payments, ShareX connects Web3 with global sharing
economy brands, driving deep engagement and conversion
of massive Web2 users and consumer scenarios

Type Synthetic Assets

Auditors ScaleBit

Timeline Fri Jul 11 2025 - Mon Jul 21 2025

Languages Solidity

Platform BSC

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/sharex-org/sharex-evm-contracts/

Commits c3d88e161fd58d207133fc60c8acbd32dc3fb4b9
66f47d54a9c25fb688ff5569300d73c5272313c0

1/13

https://github.com/sharex-org/sharex-evm-contracts/
https://github.com/sharex-org/sharex-evm-contracts//tree/c3d88e161fd58d207133fc60c8acbd32dc3fb4b9
https://github.com/sharex-org/sharex-evm-contracts//tree/66f47d54a9c25fb688ff5569300d73c5272313c0

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

EVE src/libraries/Events.sol 20a5c50a38c86a0b970a3f35ceba9
a938d08e39e

CON src/libraries/Constants.sol 1020e34a07a1f7ec17a4d22cf562c
1a4096975d5

DTY src/libraries/DataTypes.sol f7d13570f5c8b6fc8a6cf6bae71ece
0d87c8eed4

ERR src/libraries/Errors.sol 0484d7957a4597e73300a1d6a969
bcab063a9f77

DVA src/DeshareVault.sol 9b92dff80660ab92afed68814ab69
f91cdca29f2

2/13

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 2 0

Informational 1 1 0

Minor 1 1 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

3/13

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/13

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/13

2 Summary

This report has been commissioned by ShareX to identify any potential issues and
vulnerabilities in the source code of the ShareX smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

DVA-1 Redundant State Initialization in
Constructor

Minor Fixed

DVA-2 Missing Length Validation for
Partner Name and Description

Informational Fixed

6/13

3 Participant Process

Here are the relevant actors with their respective abilities within the ShareX Smart Contract :
Admin

initialize : Proxy contract initialization

OPERATOR

registerPartner : Register new partners and update partner statistics

registerMerchant : Register a new merchant

registerDevice : Register a new device

uploadTransactionBatch : Upload the compressed transaction batch data

registerCountry : Register in a new country

7/13

4 Findings

DVA-1 Redundant State Initialization in Constructor

Severity: Minor

Status: Fixed

Code Location:

src/DeshareVault.sol#95-118

Descriptions:

The contract's constructor initializes several state variables, including _roles , _version ,

and various _counters . This same initialization logic is duplicated in the initialize function.

In an upgradeable contract pattern, the constructor is only executed once when the

implementation contract is deployed. Its state is stored within the implementation contract

itself. The initialize function, however, is called via delegatecall from the proxy, and it sets

the state in the proxy's storage context.

Since all user interactions occur through the proxy, the state variables set in the

constructor are never used by the live system. This leads to several issues:

1. Gas Inefficiency: The state-setting operations (_grantRole , _version assignment,

_counters assignments) in the constructor consume deployment gas without

providing any functional benefit to the proxied contract.

2. Misleading Events: The ContractInitialized event emitted from the constructor is

misleading, as the actual system initialization happens when the initialize function is

called on the proxy.

While the contract correctly calls _disableInitializers() to prevent malicious initialization of

the implementation contract, the redundant setup code should be removed to adhere to

best practices.

Suggestion:

It is recommended to remove the redundant state-setting logic from the constructor.

8/13

Resolution:

This issue has been fixed. The client has adopted our suggestions.

9/13

DVA-2 Missing Length Validation for Partner Name and
Description

Severity: Informational

Status: Fixed

Code Location:

src/DeshareVault.sol#174-175

Descriptions:

In the registerPartner() function, the protocol sets partner information such as partnerId ,

partnerCode , partnerName , and description .

 PartnerInfoPartnerInfo storage partner storage partner == _partners _partners[[partnerIdpartnerId]];;
 partnerpartner..idid == partnerId partnerId;;
 partnerpartner..partnerCodepartnerCode == params params..partnerCodepartnerCode;;
 partnerpartner..verificationverification == params params..verificationverification;;
 partnerpartner..timestamptimestamp == uint32uint32((blockblock..timestamptimestamp));;
 partnerpartner..iso2iso2 == params params..iso2iso2;;
 partnerpartner..partnerNamepartnerName == params params..partnerNamepartnerName;;
 partnerpartner..descriptiondescription == params params..descriptiondescription;;
 partnerpartner..businessTypebusinessType == params params..businessTypebusinessType;;

 _partnerCodeToId_partnerCodeToId[[partnerCodeHashpartnerCodeHash]] == partnerId partnerId;;

However, the protocol does not validate the length of partnerName and description . If

these fields are excessively long, it may lead to unexpected behavior or issues in storage,

event logs, or front-end display.

Suggestion:

It is recommended to add proper length validation for partnerName and description to

ensure they remain within safe and expected limits.

Resolution:

10/13

This issue has been fixed. The client has adopted our suggestions.

11/13

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

12/13

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

13/13

	907_page1.pdf
	907_page2.pdf

