BlUpve O
Audit Report

Fri Jun 21 2024

% contact@bitslab.xyz Y https://twitter.com/scalebit_

©

ScaleBit


https://twitter.com/scalebit_
https://www.scalebit.xyz/

BurveLOL Audit Report

1.1 Project Information

Description Burve Protocol is a consensus-driven token fair launch, swap,
earn and AMM (Automated Market Maker) protocol serving
multi-chains.

Type AMM

Auditors ScaleBit

Timeline Wed Jun 19 2024 - FriJun 21 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review
Source Code https://github.com/BurveProtocol/burve-contracts

Commits 2649d1bc74f345f9349bcc443a8a714165008e2f

1712


https://github.com/BurveProtocol/burve-contracts
https://github.com/BurveProtocol/burve-contracts/tree/2649d1bc74f345f9349bcc443a8a714165008e2f

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID File SHA-1 Hash

BLOLB src/preset/BurveLOLBsc.sol 877436550a53d57a65b29a9%ed1f5
756875faf3d0

BLOLB1 src/preset/BurveLOLBase.sol 209f653df467ba99cc63f94fdcabd2
ff232bda3e

BLOL src/preset/BurvelLOL.sol da619af3720e2aceecd856b112410

81c96861ad5

2/12



1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 3 1 2
Informational 0 0 0
Minor 0 0 0
Medium 2 0 2
Major 1 1 0

Critical 0 0 0

3/12



1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence
e Timestamp dependence

e Integer overflow/underflow

e Number of rounding errors

e Unchecked External Call

e Unchecked CALL Return Values

e Functionality Checks

e Reentrancy

e Denial of service / logical oversights
e Access control

e Centralization of power

e Business logic issues

e (Gas usage

e Fallback function usage

e tx.origin authentication

e Replay attacks

e Coding style issues

4/12



1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

The code scope is illustrated in section 1.2.

e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/12



This report has been commissioned by to identify any potential issues and
vulnerabilities in the source code of the smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

BLO-1 Division Before Multiplication Medium Acknowledged
Result in Precision Loss

BLO1-1 Potential Token Left Major Fixed
BLO1-2 Use of address(Oxdead) as Medium Acknowledged
Recipient

6/12



Here are the relevant actors with their respective abilities within the Smart
Contract:
N/A

7/12



BLO-1 Division Before Multiplication Result in Precision Loss

Medium

Acknowledged

src/preset/BurvelLOL.sol#46

The line of code that calculates the raisedAmount is subject to potential precision loss due
to the sequence of multiplication and division operations performed. Specifically, the

calculation:

uint256 raisedAmount = _getBalance(raisingToken) - (((paidAmount * (10000)) / (10000 -

_mintTax - pTax)) * (_mintTax + pTax)) / 10000;

performs the multiplication and division in a manner that can lead to rounding errors and

precision loss.

Avoid division before multiplication and only perform division at last.

The dev team acknowledges that they need to keep the tax before transferring.

8/12



BLO1-1 Potential Token Left

Major

Fixed

src/preset/BurvelLOLBase.sol#22;

src/preset/BurvelLOLBsc.sol#22

In the _addLiquidity() function, all tokens will be used to add liquidity on a third-party
protocol. If the token ratio on the third-party protocol is inconsistent with expectations, it

may result in a surplus of a particular asset, which will be locked in the current contract.

It is recommended to take measures to avoid this issue.

The client modified the code to avoid transferring tokens to the third-party protocol before

ido end and fixed this issue.

9/12



BLO1-2 Use of address(Oxdead) as Recipient

Medium

Acknowledged

src/preset/BurvelLOLBase.sol#27,30;
src/preset/BurvelLOLBsc.sol#27,30

In the _addLiquidity function, address(Oxdead) is used as the recipient address for
liquidity tokens. While address(Oxdead) is commonly used as a burn address, we are not

sure ifit's properly used in the _addLiquidity function.

It is suggested to check ifit's designed to be like this.

The dev team acknowledges that they intend to deposit the LP tokens into dead address.

10/12



Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Fixed: The issue has been resolved.
Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

11712



Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

12/12



	421_page1.pdf
	421_page2.pdf

