
Audit Report

Tue Jul 23 2024

contact@bitslab.xyz https://twitter.com/scalebit_

HybridVault

https://twitter.com/scalebit_
https://www.scalebit.xyz/

HybridVault Audit Report

1 Executive Summary

1.1 Project Information

Description A decentralized lending and collateral vault protocol

Type DeFi

Auditors ScaleBit

Timeline Fri Jul 12 2024 - Tue Jul 23 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/KiloExPerp/HybridVault.git

Commits 56833b25d05a6182cd8f5f4eeaafda2348af3455
636593b140ce1ed87c9cde3b0b898f0cdfa7353e
1f12e45da443fab2c310acd9bea682cac076bf2e

1/25

https://github.com/KiloExPerp/HybridVault.git
https://github.com/KiloExPerp/HybridVault/tree/56833b25d05a6182cd8f5f4eeaafda2348af3455
https://github.com/KiloExPerp/HybridVault/tree/636593b140ce1ed87c9cde3b0b898f0cdfa7353e
https://github.com/KiloExPerp/HybridVault/tree/1f12e45da443fab2c310acd9bea682cac076bf2e

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

PMA contracts/libraries/PercentageMat
h.sol

5f9702d0e7e4aabbd7735028ba3b
3e4ff0a5ed38

OOGU contracts/access/OperatorOwnerG
overnableUpgradeable.sol

f0edeac24f9b0dbbe54c3d98f2b0c
8f00fc45da0

OGU contracts/access/OwnerGovernabl
eUpgradeable.sol

3d4e40d9e82b4b1d5fef28527577
b95b85841e43

IOTPF contracts/interfaces/IOpenTradesP
nlFeed.sol

dd68fc4094ed0413972d446e4845
cbe290dcd0b5

IKS contracts/interfaces/IKiloStorage.s
ol

0f53f88300b2c8b5aef579565646b
8ec31f1c26e

IPR contracts/interfaces/IPendingRewa
rd.sol

aff851136859120eed5083d0c63c2
7593f0cc524

INF contracts/interfaces/INft.sol 6e8930cd6492d01e221fdcd6f7103
013a242ab9d

IKTLDND contracts/interfaces/IKTokenLocke
dDepositNftDesign.sol

194c6156e8e15c61ed55bbf95f993
44e1c9417a2

IOR contracts/interfaces/IOracle.sol ebdcce1a107c068c428d26e65b20
eafd57a937e0

VUSD contracts/hybridvault/VUSD.sol 9af44baeab1575b0849ad2736979
1d9bf1a3d170

IHT contracts/hybridvault/IHToken.sol a903b361e68232ca08520ee64cef8
ae16aabe033

2/25

HTO contracts/hybridvault/HToken.sol df29b88b0fbc184ae56e739926b24
7ad18273c66

IVUSD contracts/hybridvault/IVUSD.sol ef4e0032913405e8bfc3206671932
c18b2b7ba44

KERC4U contracts/hybridvault/KiloERC4626
Upgradeable.sol

692c2f3868db554f2209af6e8bce5
acc4e357dc6

KTLDND contracts/vaultv2/KTokenLockedDe
positNftDesign.sol

0f1ae629eda97fb04bff0cf2d661ecf
ebfadbc3b

KTLDN contracts/vaultv2/KTokenLockedDe
positNft.sol

2b434c169073bc1b2ea95a7e3195
bbc0ff0fc370

KTOPF contracts/vaultv2/KTokenOpenPnlF
eed.sol

4253abf692c29edbff8df446c5bad
525e8aa770b

IKT contracts/interfaces/IKToken.sol 22270cd58efff15cb866cdc16ff243
cb56aa664f

VSR contracts/core/VaultStakeReward.s
ol

9c3fc7fabb3b4c9aa12faf0ebdd8cd
84c7cdf24b

HVL contracts/hybridvault/HybridVaultL
ogic.sol

fe6170f9c4fb6c540f80cb830ae109
240b0ac5eb

IPR1 contracts/hybridvault/IPriceRouter.
sol

45c7737cac574cf32367f34ed7d3b
6ffd7c29bf6

DTY contracts/hybridvault/DataTypes.s
ol

7a12a46a10e9cb1c474f89373b6d1
51b05937214

IHV contracts/hybridvault/IHybridVault.
sol

9da0e461c25a48307e4d17e91c60
dc945d473c3b

HVA contracts/hybridvault/HybridVault.
sol

e0ed559e5d9cb22a370f2e5bed64
36fee7b5f40e

3/25

PRO contracts/hybridvault/PriceRouter.
sol

e2063c30aaf44c78a40c47e68ecf00
2b0afc23c7

4/25

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 8 6 2

Informational 1 0 1

Minor 3 2 1

Medium 3 3 0

Major 1 1 0

Critical 0 0 0

5/25

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

6/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/25

2 Summary

This report has been commissioned by KiloEx to identify any potential issues and
vulnerabilities in the source code of the HybridVault smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

HVA-1 The Condition Check in
setLiquidationBonus Is Incorrect

Medium Fixed

HVA-2 Only the Use of the Pyth oracle is
Allowed to Incur a Fee

Minor Fixed

PRO-1 Drain the Native Tokens from the
PriceRouter

Major Fixed

PRO-2 The Expired Price Check is Incorrect Medium Fixed

PRO-3 Users can Evade Updating the
Oracle's Price

Medium Fixed

PRO-4 Signature Replay Minor Acknowledged

PRO-5 Unused isKeeper Variable Minor Fixed

VSR-1 Redundant Inheritance Informational Acknowledged

8/25

3 Participant Process

Here are the relevant actors with their respective abilities within the HybridVault Smart
Contract :
Owner

The Owner can configure hToken settings through the configHToken function.

The Owner can set liquidationBonus through the setLiquidationBonus function.

The Owner can set quoteAssetsMinBp through the setQuoteAssetsMinBp function.

Operator

The Operator can set the LTV (Loan-to-Value) for HTokens through the

manageHTokenLtv function.

The Operator can perform rebalance through the reBalance function.

The Operator can perform liquidation through the liquidate function.

User

Users can make a deposit through the deposit function.

Users can initiate a withdrawal request through the makeWithdrawRequest function.

Users can cancel a withdrawal request through the cancelWithdrawRequest function.

Users can redeem through the redeem function.

Users can deposit assets with a discount and lock them for a specified duration

through the depositWithDiscountAndLock function.

Users can unlock a previously locked deposit and mint hTokens for the receiver

through the unlockDeposit function.

Users can distribute rewards through the distributeReward function.

Users can receive assets through the receiveAssets function.

Users can perform a refill through the refill function.

Users can claim unSettlePnl through the claimUnSettlePnl function.

PnlHandler

The pnlHandler can send assets through the sendAssets function.

9/25

10/25

4 Findings

HVA-1 The Condition Check in setLiquidationBonus Is
Incorrect

Severity: Medium

Status: Fixed

Code Location:

contracts/hybridvault/HybridVault.sol#146-150

Descriptions:

In the setLiquidationBonus function, _liquidationBonus is required to be

<PercentageMath.PERCENTAGE_FACTOR , which is an incorrect condition.

_liquidationBonus should always be greater than 1e4 , which is 100% , as set during

initialization. This incorrect condition renders the function ineffective.

 functionfunction setLiquidationBonussetLiquidationBonus((uint _liquidationBonusuint _liquidationBonus)) external onlyOwner external onlyOwner {{
 requirerequire((_liquidationBonus _liquidationBonus >> 00 &&&& _liquidationBonus _liquidationBonus <<
PercentageMathPercentageMath..PERCENTAGE_FACTORPERCENTAGE_FACTOR,, "HybridVault: invalid value""HybridVault: invalid value"));;
 liquidationBonus liquidationBonus == _liquidationBonus _liquidationBonus;;
 emit emit OwnerSetLiquidationBonusOwnerSetLiquidationBonus((_liquidationBonus_liquidationBonus));;
 }}

 functionfunction initializeinitialize((
 address _vUSDaddress _vUSD,,
 address _kTokenaddress _kToken,,
 address _quoteTokenaddress _quoteToken,,
 address _priceRouteraddress _priceRouter
)) publicpublic initializer initializer {{
 __owner_governable_init__owner_governable_init(());;
 vUSD vUSD == _vUSD _vUSD;;
 kToken kToken == IKTokenIKToken((_kToken_kToken));;
 quoteToken quoteToken == _quoteToken _quoteToken;;
 quoteAssetsMinBp quoteAssetsMinBp == 50005000;; //50%//50%
 priceRouter priceRouter == IPriceRouterIPriceRouter((_priceRouter_priceRouter));;
 PART_WITHDRAW_HF_THRESHOLDPART_WITHDRAW_HF_THRESHOLD == 2000020000;; //200%//200%
 liquidationBonus liquidationBonus == 1050010500;; //105%//105%

11/25

 IVUSDIVUSD((vUSDvUSD))..approveapprove((_kToken_kToken,, typetype((uintuint))..maxmax));;
 }}

Suggestion:

It is recommended to implement the correct condition check.

Resolution:

This issue has been fixed. The client has implemented the correct condition check.

12/25

HVA-2 Only the Use of the Pyth oracle is Allowed to Incur a Fee

Severity: Minor

Status: Fixed

Code Location:

contracts/hybridvault/HybridVault.sol#168-209

Descriptions:

Currently, updating prices with the Pyth oracle incurs a fee. If the msg.value passed by the

user is greater than 0 and the user does not use the Pyth oracle, this amount will be a loss

for the user.

functionfunction priceOfUnderlyingpriceOfUnderlying((bytesbytes calldatacalldata data data)) publicpublic override override payablepayable {{
 OracleSource source OracleSource source == OracleSourceOracleSource((uint8uint8((datadata[[00]]))));;
 uintuint tokenId tokenId == uintuint((uint8uint8((datadata[[11]]))));;
 ifif ((source source ==== OracleSource OracleSource..KILO_SIGNATUREKILO_SIGNATURE)) {{
 priceOfSignaturepriceOfSignature((tokenIdtokenId,, data data));;
 }} elseelse ifif ((source source ==== OracleSource OracleSource..PYTHPYTH)) {{
 ((bytes32bytes32 pythId pythId,, bytesbytes[[]] memorymemory priceUpdateData priceUpdateData)) == abi abi..decodedecode((datadata[[22::]],, ((bytes32bytes32,,
bytesbytes[[]]))));;
 priceOfPythpriceOfPyth((tokenIdtokenId,, pythId pythId,, priceUpdateData priceUpdateData));;
 }} elseelse ifif ((source source ==== OracleSource OracleSource..CHAINLINKCHAINLINK)) {{
 ((addressaddress token token)) == abi abi..decodedecode((datadata[[22::]],, ((addressaddress))));;
 priceOfChainLinkpriceOfChainLink((tokenIdtokenId,, token token));;
 }} elseelse ifif ((source source ==== OracleSource OracleSource..KILO_EXKILO_EX)) {{
 priceOfKiloExpriceOfKiloEx((tokenIdtokenId,, data data));;
 }} elseelse ifif ((source source ==== OracleSource OracleSource..MOCK_ORACLEMOCK_ORACLE)) {{
 priceOfMockpriceOfMock((tokenIdtokenId,, data data));;
 }}
}}

Suggestion:

It is recommended to check whether the Pyth oracle is used when msg.value passed by the

user is greater than 0.

Resolution:

13/25

This issue has been fixed. The client has checked whether the Pyth oracle is used when

msg.value passed by the user is greater than 0.

14/25

PRO-1 Drain the Native Tokens from the PriceRouter

Severity: Major

Status: Fixed

Code Location:

contracts/hybridvault/PriceRouter.sol#94

Descriptions:

In the PriceRouter.priceOfPyth() function, the protocol calls pyth.updatePriceFeeds() to

update the price, and the fee for updating the price is paid using the protocol's funds.

 functionfunction priceOfPythpriceOfPyth((uint tokenIduint tokenId,, bytes32 pythId bytes32 pythId,, bytes bytes[[]] memory priceUpdateData memory priceUpdateData))
internal internal returnsreturns ((uintuint)) {{
 requirerequire((oracleSourcesoracleSources[[tokenIdtokenId]] ==== OracleSourceOracleSource..PYTHPYTH,, "PriceRouter: not allowed""PriceRouter: not allowed"));;
 uint fee uint fee == pyth pyth..getUpdateFeegetUpdateFee((priceUpdateDatapriceUpdateData));;
 pythpyth..updatePriceFeedsupdatePriceFeeds{{ valuevalue:: fee fee }}((priceUpdateDatapriceUpdateData));;
 PythStructsPythStructs..PricePrice memory priceInfo memory priceInfo == pyth pyth..getPriceNoOlderThangetPriceNoOlderThan((pythIdpythId,,
maxOldAgemaxOldAge));;
 uint oPrice uint oPrice == uintuint((uint64uint64((priceInfopriceInfo..priceprice))));;
 uint priceuint price;;
 ifif ((priceInfopriceInfo..expoexpo >=>= 00)) {{
 uint exponent uint exponent == uintuint((uint32uint32((priceInfopriceInfo..expoexpo))));;
 price price == oPrice oPrice ** PRICE_BASEPRICE_BASE ** ((1010 **** exponent exponent));;
 }} elseelse {{
 uint exponent uint exponent == uintuint((uint32uint32((--priceInfopriceInfo..expoexpo))));;
 price price == ((oPrice oPrice ** PRICE_BASEPRICE_BASE)) // ((1010 **** exponent exponent));;
 }}
 kiloExPriceskiloExPrices[[tokenIdtokenId]] == PriceInfoPriceInfo((priceprice,, block block..timestamptimestamp));;
 returnreturn price price;;
 }}

A malicious user can call HybridVault.deposit() to deposit 0 or a very small amount of

hAssets and repeatedly call PriceRouter.priceOfPyth() , depleting the contract's funds by

continuously triggering the price update.

Suggestion:

It is recommended to have users pay the fee for updating the oracle.

15/25

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/25

PRO-2 The Expired Price Check is Incorrect

Severity: Medium

Status: Fixed

Code Location:

contracts/hybridvault/PriceRouter.sol#105;

contracts/hybridvault/PriceRouter.sol#113

Descriptions:

In the PriceRouter.priceOfPyth() and PriceRouter.priceOfChainLink() functions, the

protocol updates PriceInfo as PriceInfo(price, block.timestamp) , where the current time

block.timestamp is used instead of the timestamp from when the price was published by

the oracle

 kiloExPriceskiloExPrices[[tokenIdtokenId]] == PriceInfoPriceInfo((priceprice,, block block..timestamptimestamp));;

Later, when the protocol calls priceRouter.getPriceNoOlderThan() to ensure the price is not

outdated, the function checks if block.timestamp - priceInfo.timestamp <= maxOldAge .

Since priceInfo.timestamp is set to block.timestamp , this validation will always pass and

does not effectively prevent the use of outdated prices.

Suggestion:

It is recommended to set priceInfo.timestamp to the timestamp of when the price was

published by the oracle. https://github.com/pyth-network/pyth-

crosschain/blob/94f1bd54612adc3e186eaf0bb0f1f705880f20a6/target_chains/ethereum/sdk/solidity

 struct struct PricePrice {{
 // Price// Price
 int64 priceint64 price;;
 // Confidence interval around the price// Confidence interval around the price
 uint64 confuint64 conf;;
 // Price exponent// Price exponent
 int32 expoint32 expo;;
 // Unix timestamp describing when the price was published// Unix timestamp describing when the price was published

17/25

https://github.com/pyth-network/pyth-crosschain/blob/94f1bd54612adc3e186eaf0bb0f1f705880f20a6/target_chains/ethereum/sdk/solidity/PythStructs.sol#L21
https://github.com/pyth-network/pyth-crosschain/blob/94f1bd54612adc3e186eaf0bb0f1f705880f20a6/target_chains/ethereum/sdk/solidity/PythStructs.sol#L21

 uint publishTimeuint publishTime;;
 }}

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/25

PRO-3 Users can Evade Updating the Oracle's Price

Severity: Medium

Status: Fixed

Code Location:

contracts/hybridvault/PriceRouter.sol#92

Descriptions:

In the priceOfPyth() function, the protocol calculates the fee based on priceUpdateData

and then updates the price, allowing a maximum time of 90 seconds.

functionfunction priceOfPythpriceOfPyth((uint tokenIduint tokenId,, bytes32 pythId bytes32 pythId,, bytes bytes[[]] memory priceUpdateData memory priceUpdateData))
internal internal returnsreturns ((uintuint)) {{
 requirerequire((oracleSourcesoracleSources[[tokenIdtokenId]] ==== OracleSourceOracleSource..PYTHPYTH,, "PriceRouter: not allowed""PriceRouter: not allowed"));;
 uint fee uint fee == pyth pyth..getUpdateFeegetUpdateFee((priceUpdateDatapriceUpdateData));;
 pythpyth..updatePriceFeedsupdatePriceFeeds{{ valuevalue:: fee fee }}((priceUpdateDatapriceUpdateData));;
 PythStructsPythStructs..PricePrice memory priceInfo memory priceInfo == pyth pyth..getPriceNoOlderThangetPriceNoOlderThan((pythIdpythId,,
maxOldAgemaxOldAge));;
 uint oPrice uint oPrice == uintuint((uint64uint64((priceInfopriceInfo..priceprice))));;
 uint priceuint price;;
 ifif ((priceInfopriceInfo..expoexpo >=>= 00)) {{
 uint exponent uint exponent == uintuint((uint32uint32((priceInfopriceInfo..expoexpo))));;
 price price == oPrice oPrice ** PRICE_BASEPRICE_BASE ** ((1010 **** exponent exponent));;
 }} elseelse {{
 uint exponent uint exponent == uintuint((uint32uint32((--priceInfopriceInfo..expoexpo))));;
 price price == ((oPrice oPrice ** PRICE_BASEPRICE_BASE)) // ((1010 **** exponent exponent));;
 }}
 kiloExPriceskiloExPrices[[tokenIdtokenId]] == PriceInfoPriceInfo((priceprice,, block block..timestamptimestamp));;
 returnreturn price price;;
 }}

A user can evade updating the price by passing empty priceUpdateData after each normal

transaction.

Suggestion:

It is recommended to check that the length of priceUpdateData is greater than 0.

Resolution:

19/25

This issue has been fixed. The client has adopted our suggestions.

20/25

PRO-4 Signature Replay

Severity: Minor

Status: Acknowledged

Code Location:

contracts/hybridvault/PriceRouter.sol#123-135

Descriptions:

In the priceOfSignature.priceOfSignature() function, when priceOfSignatureId[tokenId] is

less than the timestamp , the protocol verifies if the signature is from the specified address

and then updates kiloExPrices . The issue here is that this signature can be replayed.If a

malicious user uses an old signature, they will use outdated prices. Even if the market price

of the token has increased, this could negatively impact the protocol.

 functionfunction priceOfSignaturepriceOfSignature((uint tokenIduint tokenId,, bytes calldata data bytes calldata data)) publicpublic {{
 ((uint priceuint price,, uint timestamp uint timestamp,, bytes memory signature bytes memory signature)) == abi abi..decodedecode((datadata[[22::]],, ((uintuint,,
uintuint,, bytes bytes))));;
 ifif((priceOfSignatureIdpriceOfSignatureId[[tokenIdtokenId]] << timestamp timestamp)) {{
 bytes32 _msgHash bytes32 _msgHash == toEthSignedMessageHashtoEthSignedMessageHash((getMessageHashgetMessageHash((tokenIdtokenId,, price price,,
timestamptimestamp))));;
 requirerequire((verifyverify((_msgHash_msgHash,, signature signature)),, "PriceRouter: Invalid Signer!""PriceRouter: Invalid Signer!"));;
 ifif ((timestamp timestamp >> block block..timestamptimestamp)) {{ //input timestamp may be larger than the block//input timestamp may be larger than the block
timetime
 timestamp timestamp == block block..timestamptimestamp;;
 }}
 kiloExPriceskiloExPrices[[tokenIdtokenId]] == PriceInfoPriceInfo((priceprice,, timestamp timestamp));;
 priceOfSignatureIdpriceOfSignatureId[[tokenIdtokenId]] == timestamp timestamp;;
 }}
 }}

Suggestion:

It is recommended to mark used signatures to prevent replay attacks.

21/25

PRO-5 Unused isKeeper Variable

Severity: Minor

Status: Fixed

Code Location:

contracts/hybridvault/PriceRouter.sol#18

Descriptions:

The isKeeper variable is likely intended to manage certain operational permissions, but it is

currently not used in any functions. This means its intended purpose is not realized, possibly

indicating a missing functionality. Unused variables increase code complexity and negatively

impact code readability and maintainability.

 mappingmapping((addressaddress =>=> bool bool)) publicpublic isKeeper isKeeper;;

Suggestion:

It is recommended to remove it from the code if it is not necessary.

Resolution:

This issue has been fixed. The client has removed it from the code.

22/25

VSR-1 Redundant Inheritance

Severity: Informational

Status: Acknowledged

Code Location:

contracts/core/VaultStakeReward.sol#17

Descriptions:

The VaultStakeReward contract inherits both ERC20Upgradeable and

KiloERC4626Upgradeable , but since the KiloERC4626Upgradeable contract already

inherits from ERC20Upgradeable , it is unnecessary to continue inheriting from

KiloERC4626Upgradeable here.

// VaultStakeReward.sol

...

contract VaultStakeReward is OwnerGovernableUpgradeable, ReentrancyGuardUpgradeable,

PausableUpgradeable, ERC20Upgradeable, KiloERC4626Upgradeable {

...

// KiloERC4626Upgradeable.sol

...

abstract contract KiloERC4626Upgradeable is Initializable, ERC20Upgradeable,

IERC4626Upgradeable {

...

Suggestion:

It is recommended to remove the VaultStakeReward inheritance statement

for ERC20Upgradeabl .

23/25

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

25/25

	471_page1.pdf
	471_page2.pdf

