
Audit Report

Fri Mar 14 2025

contact@bitslab.xyz https://twitter.com/scalebit_

TagAI

https://twitter.com/scalebit_
https://www.scalebit.xyz/

TagAI Audit Report

1 Executive Summary

1.1 Project Information

Description A Pump Token Contract

Type Pump

Auditors ScaleBit

Timeline Wed Mar 12 2025 - Fri Mar 14 2025

Languages Solidity

Platform BSC

Methods Architecture Review, Unit Testing, Manual Review

1/16

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

PUM Pump.sol 6bafa5356a15c88b773a3025cb72c
78b2f16b021

TOK Token.sol c1eecef27abbf26248e195a0283b5
652e9266698

2/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 7 0

Informational 2 2 0

Minor 3 3 0

Medium 2 2 0

Major 0 0 0

Critical 0 0 0

3/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/16

2 Summary

This report has been commissioned by TagAI to identify any potential issues and
vulnerabilities in the source code of the Pump smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

PUM-1 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

PUM-2 Missing Chain id in the Hash Data Medium Fixed

PUM-3 Signature Malleability Minor Fixed

PUM-4 Unused Imports Informational Fixed

TOK-1 The approve Operation is Useless Minor Fixed

TOK-2 Fee Evasion Minor Fixed

TOK-3 Unused Storage Variable Informational Fixed

6/16

3 Participant Process

Here are the relevant actors with their respective abilities within the Pump Smart Contract :
Admin

adminChangeIPShare : Updates the IP share address for the platform.

adminChangeCreateFee : Adjusts the fee required to create a token.

adminChangeFeeRatio : Modifies the fee ratio.

adminChangeClaimSigner : Changes the address of the claim signer.

adminSetClaimFee : Sets the fee for claiming rewards.

adminChangeFeeAddress : Updates the address where fees are received.

User

createToken : Allows users to create a new token by paying a fee.

userClaim : Lets a user claim a reward by verifying the order and signature.

buyToken : Allows users to purchase tokens using a bonding curve pricing

mechanism.

sellToken : Enables users to sell tokens based on the bonding curve price, considering

slippage and fees.

7/16

4 Findings

PUM-1 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

Pump.sol#5;

Pump.sol#7

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. Below is the official documentation explanation from OpenZeppelin�

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

importimport "@openzeppelin/contracts/access/Ownable.sol""@openzeppelin/contracts/access/Ownable.sol";;

Suggestion:

It is recommended to use a two-step ownership transfer pattern.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

8/16

https://docs.openzeppelin.com/contracts/4.x/api/access
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

PUM-2 Missing Chain id in the Hash Data

Severity: Medium

Status: Fixed

Code Location:

Pump.sol#235

Descriptions:

The userClaim() function allows users to claim rewards by verifying a signature. However,

the hash data used for generating and verifying the signature does not include the chain ID.

 bytes32 data bytes32 data == keccak256keccak256((abiabi..encodePackedencodePacked((tokentoken,, orderId orderId,, msg msg..sendersender,, amount amount))));;
 ifif ((!!_check_check((datadata,, signature signature)))) {{
 revert revert InvalidSignatureInvalidSignature(());;
 }}

This omission creates a vulnerability known as a replay attack, where a valid signature on

one chain can be reused on another chain.

Suggestion:

It is recommended to include the Chain ID in the Hash Data.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

9/16

PUM-3 Signature Malleability

Severity: Minor

Status: Fixed

Code Location:

Pump.sol#267

Descriptions:

The elliptic curve used in Ethereum for signatures is symmetrical, hence for every [v,r,s]

there exists another [v,r,s] that returns the same valid result. Therefore two valid signatures

exist. ecrecover() is vulnerable to signature malleabilit, so it can be dangerous to use it

directly.

 functionfunction _check_check((bytes32 databytes32 data,, bytes calldata sign bytes calldata sign)) internal view internal view returnsreturns ((boolbool)) {{
 bytes32 r bytes32 r == abi abi..decodedecode((signsign[[::3232]],, ((bytes32bytes32))));;
 bytes32 s bytes32 s == abi abi..decodedecode((signsign[[3232::6464]],, ((bytes32bytes32))));;
 uint8 v uint8 v == uint8uint8((signsign[[6464]]));;
 ifif ((v v << 2727)) {{
 ifif ((v v ==== 00 |||| v v ==== 11)) v v +=+= 2727;;
 }}
 bytes memory profix bytes memory profix == "\x19Ethereum Signed Message:\n32""\x19Ethereum Signed Message:\n32";;
 bytes32 info bytes32 info == keccak256keccak256((abiabi..encodePackedencodePacked((profixprofix,, data data))));;
 address addr address addr == ecrecoverecrecover((infoinfo,, v v,, r r,, s s));;
 returnreturn addr addr ==== claimSigner claimSigner;;
 }}

Suggestion:

It is recommended to use OpenZeppelin’s ECDSA.sol library.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/16

PUM-4 Unused Imports

Severity: Informational

Status: Fixed

Code Location:

Pump.sol#4;

Pump.sol#6

Descriptions:

The contract imports the following OpenZeppelin libraries but does not use them:

importimport "@openzeppelin/contracts/proxy/Clones.sol""@openzeppelin/contracts/proxy/Clones.sol";;
importimport "@openzeppelin/contracts/utils/Nonces.sol""@openzeppelin/contracts/utils/Nonces.sol";;

Suggestion:

Remove the unused imports to reduce contract size and improve readability.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/16

TOK-1 The approve Operation is Useless

Severity: Minor

Status: Fixed

Code Location:

Token.sol#215

Descriptions:

In the _makeLiquidityPool() function, the protocol first approves the router to spend the

current contract's tokens.

 functionfunction _makeLiquidityPool_makeLiquidityPool(()) privateprivate {{
 _approve_approve((addressaddress((thisthis)),, IPumpIPump((managermanager))..getUniswapV2RoutergetUniswapV2Router(()),, liquidityAmount liquidityAmount));;

However, in the subsequent steps, the protocol directly transfers tokens and WETH to the

Uniswap V2 pair and calls mint() .

 uint256 tokenAmount uint256 tokenAmount == balanceOfbalanceOf((addressaddress((thisthis))));;
 uint256 ethBalance uint256 ethBalance == addressaddress((thisthis))..balancebalance;;

 _transfer_transfer((addressaddress((thisthis)),, pair pair,, tokenAmount tokenAmount));;
 ((bool successbool success,,)) == IPumpIPump((managermanager))..getWETHgetWETH(())..callcall{{valuevalue:: ethBalance ethBalance}}
((abiabi..encodeWithSignatureencodeWithSignature(("deposit()""deposit()"))));;
 requirerequire((successsuccess,, "ETH to WETH failed""ETH to WETH failed"));;
 ERC20ERC20((IPumpIPump((managermanager))..getWETHgetWETH(())))..transfertransfer((pairpair,, ethBalance ethBalance));;

 IUniswapV2PairIUniswapV2Pair((pairpair))..mintmint((BlackHoleBlackHole));;

This makes the approve operation appear redundant or unnecessary.

Suggestion:

It is recommended to remove the approve operation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/16

TOK-2 Fee Evasion

Severity: Minor

Status: Fixed

Code Location:

Token.sol#75-150

Descriptions:

In the sellToken function, sellAmount is checked as follows:

ifif ((sellAmount sellAmount << 100000000100000000)) {{
 revert revert DustIssueDustIssue(());;
}}

However, the buyToken function lacks a similar check. If buyFunds is too low, precision

loss may cause the fee to be zero:

uint256 buyFunds uint256 buyFunds == msg msg..valuevalue;;
uint256 tiptagFee uint256 tiptagFee == ((msgmsg..valuevalue ** feeRatio feeRatio[[00]])) // divisor divisor;;
uint256 sellsmanFee uint256 sellsmanFee == ((msgmsg..valuevalue ** feeRatio feeRatio[[11]])) // divisor divisor;;

Suggestion:

Implement a minimum fee threshold to ensure that a small buyFunds value does not

completely evade fees.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/16

TOK-3 Unused Storage Variable

Severity: Informational

Status: Fixed

Code Location:

Token.sol#30

Descriptions:

In the token contract, the following storage variable is unused:

mappingmapping((uint256uint256 =>=> bool bool)) publicpublic claimedOrder claimedOrder;;

Suggestion:

Remove the unused storage variable to optimize contract storage and reduce unnecessary

gas costs.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	793_page1.pdf
	793_page2.pdf

