
Audit Report

Fri Jun 06 2025

contact@bitslab.xyz https://twitter.com/scalebit_

Palladium Labs

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Palladium Labs Audit Report

1 Executive Summary

1.1 Project Information

Description Palladium is a decentralized finance protocol implementing a
Collateralized Debt Position (CDP) system.

Type Stablecoin

Auditors ScaleBit

Timeline Fri May 23 2025 - Fri May 30 2025

Languages Solidity

Platform Bitcoin Network

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/PalladiumLabs/Palladium-SmartContracts

Commits 954b46b3128898eddb3181efa5514b238cc9c947
97f18d7a22c3bfe073c117d8fa3e1f0a88bed93a

1/28

https://github.com/PalladiumLabs/Palladium-SmartContracts
https://github.com/PalladiumLabs/Palladium-SmartContracts/tree/954b46b3128898eddb3181efa5514b238cc9c947
https://github.com/PalladiumLabs/Palladium-SmartContracts/tree/97f18d7a22c3bfe073c117d8fa3e1f0a88bed93a

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

CSP contracts/CollSurplusPool.sol 9980218a46282836ba9fcae54afc1
a9272affb4c

IBO contracts/Interfaces/IBorrowerOpe
rations.sol

15ca9d4225ddce297de39e20a525
394e4232079c

IST contracts/Interfaces/ISortedTroves.
sol

b9e809f97a0e0a6ace1ac1ff9c9c1d
4dba2253fb

IERC2P contracts/Interfaces/IERC2612Perm
it.sol

4bf9c24d84d79fab7f56467dc58f35
30ec521bc1

IAP contracts/Interfaces/IActivePool.sol 9fec177aa7981f7a28bee13be54a3
aa4afdf3249

IDP contracts/Interfaces/IDefaultPool.s
ol

57bda58e773dae461794d24afd72
7bb6ac8a8d52

IDE contracts/Interfaces/IDeposit.sol edd2f648572b8c00e255901dcc1f1
c8a6b728266

IPDMS contracts/Interfaces/IPDMStaking.s
ol

3373c7cc5d78a9aae8a4faa626a5c
1319220d8fe

ITMO contracts/Interfaces/ITroveManage
rOperations.sol

aa0473a6489d74fea5b621258d32
60b6e13ae021

IPB contracts/Interfaces/IPalladiumBas
e.sol

1d98f39bf480fe020ad49dc943131
b5657d6fc49

2/28

IPO contracts/Interfaces/IPool.sol 721635fd9526d7f735012e9d9c18a
e2c649c0b7c

ICSP contracts/Interfaces/ICollSurplusPo
ol.sol

1c0ab4c4c57c851cf9e25b643d0ea
cefbdbe1fcf

ISP contracts/Interfaces/IStabilityPool.s
ol

f9a5422a35c10dcd4e9a9400fdcf5f
3486fd3610

IDT contracts/Interfaces/IDebtToken.so
l

579c322eca4ead778eb0c5d54468
e3877ed8a914

IPF contracts/Interfaces/IPriceFeed.sol 6035b8a8389b75074dcb3eeafdbd
57c40ec5c8ef

ICI contracts/Interfaces/ICommunityIs
suance.sol

779b35396c7d33a6b8bb2e154685
0e1784630720

IFC contracts/Interfaces/IFeeCollector.s
ol

4ba23f8fb4b824c63db314a67ce27
ceb22784f16

ITM contracts/Interfaces/ITroveManage
r.sol

8ee0123ec7aed961f2161e88312d7
8bd541daef6

IERC2D contracts/Interfaces/IERC20Decima
ls.sol

7920086d6058ab6ace0613b9d65b
14abbd2d3f25

IAC contracts/Interfaces/IAdminContra
ct.sol

c552ec0f8f36a9122ef7d077d2a036
8d31d9562f

WE2UPA contracts/Pricing/WstEth2UsdPrice
Aggregator.sol

c42e6560026d15ccb93bbb423907
19e1a1908242

API3PI contracts/Pricing/API3ProxyInterfa
ce.sol

75fe032d29ba565cdb5e08b43c12
26ef3dfe4ffe

3/28

PFL2 contracts/Pricing/PriceFeedL2.sol 25f4a01bea45cacd3407349a491de
c9f1dd48591

FPA contracts/Pricing/FixedPriceAggreg
ator.sol

e4c0c90ca014e3217de92768b4d0
4f8199c12ee4

SE2EPA contracts/Pricing/SfrxEth2EthPrice
Aggregator.sol

455fc79eee6cee332b65d83457932
d43299746f8

SPO contracts/StabilityPool.sol 40aee19d503fc37b0ff8052423856
cffce3b11e9

BOP contracts/BorrowerOperations.sol bcd809a10c741c64124789acdff8a
de308e59528

ADD contracts/Addresses.sol d6b02af6519702347e180c0957943
66eb1a33c32

PFE contracts/PriceFeed.sol 4bf57c8f75865d4229e8d1b16f8b6
ab6422d1598

ACO contracts/Dependencies/Addresse
sConfigurable.sol

b3f96e8d0787c3c6bffe5546228ac
946c9bfc1c8

ERC2P contracts/Dependencies/ERC20Per
mit.sol

f6309b125e601bac8ca80b6160eea
0bca95c4514

PBA contracts/Dependencies/Palladium
Base.sol

b5b69c21e826032f9b88fc3b860d1
678d26e1a70

AMA contracts/Dependencies/Addresse
sMainnet.sol

ae89323a092460d76c109a4d0126
c5d054483ce2

BMA contracts/Dependencies/BaseMat
h.sol

f73260a2a29b9f325f8ae4c1236e2
d9a8a820aac

4/28

STR contracts/Dependencies/SafetyTra
nsfer.sol

ff3f611947ef922d32eaeb0c6273db
66ee6757bd

PMA contracts/Dependencies/Palladium
Math.sol

dc628af27cc5a8b988375ad21986a
90cb1c5b872

TMO contracts/TroveManagerOperation
s.sol

a6fc5187fe15b7665e3205967fe79
b1a14b914b6

ACO1 contracts/AdminContract.sol 284ae7fa88e74451fae73d08dc6ab
b12867c0f9a

CIS contracts/PDM/CommunityIssuanc
e.sol

647e2eeba8bd7ef3e310926b5bb0
f1ab38b0a103

PDMS contracts/PDM/PDMStaking.sol 096be521ce8aa0a8a027c353c556
d5f5be964e6d

PDMT contracts/PDM/PDMToken.sol 843c267d4ccd963257ec4bb63cf96
fe210519309

LPDM contracts/PDM/LockedPDM.sol 627970e72c2ff8f2c7dd20f36ce5da
5460d3f1d7

FCO contracts/FeeCollector.sol d5b592ee0014466b43a04a8cae05
eb85afd6b04d

DTO contracts/DebtToken.sol 7131c276bdd8b45a8c8d0412815c
02e49e7de13b

GPO contracts/GasPool.sol 21560619990d476af1df57aa6f506
92ac0265553

TIM contracts/Timelock.sol db2bb5cb8b03cbaaf562fc6affe4ec
1e18c67f9f

5/28

STR1 contracts/SortedTroves.sol c548aa5086b91fea72a2a243b5d5f
e86bdf5effd

DPO contracts/DefaultPool.sol 20458a3d2f562f94d9bd6c4a46ac6
f0756752a12

APO contracts/ActivePool.sol d7c87f1710eb45d0a326e0df0a548
90bad1e3b3f

TMA contracts/TroveManager.sol fc5273843547af61eec5f707d5ff5d
cec72c917b

6/28

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 4 3

Informational 1 1 0

Minor 3 2 1

Medium 1 0 1

Major 2 1 1

Critical 0 0 0

7/28

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

8/28

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

9/28

2 Summary

This report has been commissioned by Palladium Labs to identify any potential issues and
vulnerabilities in the source code of the Palladium smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.
The Palladium Smart Contracts is a fork from Gravita. This audit focuses on the changes
Palladium has made to the Gravita codebase:

Vessels have been renamed to Trove across the codebase

Few parameters have been updated in FeeManager.sol to make it a one-time fee model

(which was earlier a refundable fee model)

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

ACO-1 Centralization Risk Major Fixed

ACO-2 Insufficient Parameters Validation Minor Fixed

ACO-3 Missing Check for Address Minor Fixed

ACO-4 Lack of Event Emit Informational Fixed

AMA-1 Addresses Not Updated Major Acknowledged

APO-1 Single-step Ownership Transfer
Can be Dangerous

Minor Acknowledged

SPO-1 Initialize Could Be Front-Run Medium Acknowledged

10/28

11/28

3 Participant Process

Here are the relevant actors with their respective abilities within the Palladium Labs Smart
Contract :
Admin

Admin can finalize setup initialization through the setSetupIsInitialized() function.

Admin can add new collateral types through the addNewCollateral() function.

Admin can configure collateral parameters through the setCollateralParameters()

function.

Admin can activate or deactivate collaterals through the setIsActive() function.

Admin can set borrowing fee rates through the setBorrowingFee() function.

Admin can set Critical Collateralization Ratio through the setCCR() function.

Admin can set Minimum Collateralization Ratio through the setMCR() function.

Admin can set minimum net debt threshold through the setMinNetDebt() function.

Admin can set minting cap limits through the setMintCap() function.

Admin can set percent divisor values through the setPercentDivisor() function.

Admin can set redemption fee floor rates through the setRedemptionFeeFloor()

function.

Admin can set redemption block timestamps through the

setRedemptionBlockTimestamp() function.

Admin can authorize contract upgrades through the authorizeUpgrade() function.

Admin can set or update primary and fallback oracles for an asset through the

setOracle() function.

Admin can transfer contract ownership through the transferOwnership() function.

Admin can renounce contract ownership through the renounceOwnership() function.

12/28

Admin can stop or resume minting for a specific collateral asset through the

emergencyStopMinting() function.

Admin can add an address to the whitelist through the addWhitelist() function.

Admin can remove an address from the whitelist through the removeWhitelist()

function.

Admin can set a new delay by queuing and executing a transaction that calls the

setDelay() function in Timelock contract.

Admin can set a pending admin by queuing and executing a transaction that calls the

setPendingAdmin() function in Timelock contract.

Admin can queue transactions by calling the queueTransaction() function in

Timelock contract.

Admin can cancel queued transactions by calling the cancelTransaction() function in

Timelock contract.

Admin can execute queued transactions by calling the executeTransaction() function

in Timelock contract.

PendingAdmin can accept the admin role by calling the acceptAdmin() function in

Timelock contract.

Whitelisted Contract

Whitelisted contracts can mint new PUSD tokens through the

mintFromWhitelistedContract() function.

Whitelisted contracts can burn PUSD tokens through the

burnFromWhitelistedContract() function.

BorrowerOperations

BorrowerOperations can mint PUSD tokens for an account (when not blocked) through

the mint() function.

BorrowerOperations can burn PUSD tokens from an account through the burn()

function.

13/28

BorrowerOperations can increase borrower debt through the increaseDebt()

function.

BorrowerOperations can decrease borrower debt through the decreaseDebt()

function.

BorrowerOperations can close borrower debt through the closeDebt() function.

BorrowerOperations can transfer assets to other contracts through the sendAsset()

function.

BorrowerOperations can notify the contract of received ERC20 tokens through the

receivedERC20() function.

BorrowerOperations can insert nodes through the insert() function.

BorrowerOperations can reposition nodes through the reInsert() function.

BorrowerOperations can add trove owners to arrays through the

addTroveOwnerToArray() function.

BorrowerOperations can update trove reward snapshots through the

updateTroveRewardSnapshots() function.

BorrowerOperations can update stakes and total stakes through the

updateStakeAndTotalStakes() function.

BorrowerOperations can set trove statuses through the setTroveStatus() function.

BorrowerOperations can increase trove collateral through the increaseTroveColl()

function.

BorrowerOperations can decrease trove collateral through the decreaseTroveColl()

function.

BorrowerOperations can increase trove debt through the increaseTroveDebt()

function.

BorrowerOperations can decrease trove debt through the decreaseTroveDebt()

function.

StabilityPool

14/28

StabilityPool can transfer PUSD tokens from a sender to itself through the

sendToPool() function.

StabilityPool can return PUSD tokens from the pool to a receiver through the

returnFromPool() function.

StabilityPool can burn PUSD tokens from an account through the burn() function.

TroveManager

TroveManager can burn PUSD tokens from an account through the burn() function.

TroveManager can return PUSD tokens from the pool to a receiver through the

returnFromPool() function.

TroveManager can liquidate borrower debt through the liquidateDebt() function.

TroveManager can handle redemption fees through the handleRedemptionFee()

function.

TroveManager can decrease borrower debt through the decreaseDebt() function.

TroveManager can close borrower debt through the closeDebt() function.

TroveManager can increase debt amount through the increaseDebt() function.

TroveManager can transfer assets to other contracts through the sendAsset()

function.

TroveManager can insert nodes through the insert() function.

TroveManager can remove nodes through the remove() function.

TroveManager can reposition nodes through the reInsert() function.

TroveManager can offset debt during liquidations through the offset() function.

TroveManagerOperations

TroveManagerOperations can transfer assets to other contracts through the

sendAsset() function.

TroveManagerOperations can execute full redemptions through the

executeFullRedemption() function.

15/28

TroveManagerOperations can execute partial redemptions through the

executePartialRedemption() function.

TroveManagerOperations can finalize redemptions through the finalizeRedemption()

function.

TroveManagerOperations can update base rates from redemptions through the

updateBaseRateFromRedemption() function.

TroveManagerOperations can move pending trove rewards to the active pool through

the movePendingTroveRewardsToActivePool() function.

TroveManagerOperations can redistribute debt and collateral through the

redistributeDebtAndColl() function.

TroveManagerOperations can update system snapshots excluding collateral

remainders through the updateSystemSnapshots_excludeCollRemainder() function.

TroveManagerOperations can close troves via liquidation through the

closeTroveLiquidation() function.

TroveManagerOperations can send gas compensation through the

sendGasCompensation() function.

TroveManagerOperations can apply pending rewards through the

applyPendingRewards() function.

TroveManagerOperations can remove stakes through the removeStake() function.

TroveManagerOperations can close troves through the closeTrove() function.

DefaultPool

DefaultPool can notify the contract of received ERC20 tokens through the

receivedERC20() function.

StabilityPool

StabilityPool can decrease debt amount through the decreaseDebt() function.

StabilityPool can receive assets through the sendAsset() function.

AdminContract

16/28

AdminContract can add new collateral types through the addCollateralType()

function.

ActivePool

ActivePool can update collateral balances through the receivedERC20() function.

Timelock

Timelock can set the redemption softening parameter through the

setRedemptionSofteningParam() function.

User

User can open a trove through the openTrove() function.

User can adjust their trove through the adjustTrove() function.

User can close their trove through the closeTrove() function.

User can liquidate an undercollateralized trove through the liquidate() function.

User can liquidate a sequence of undercollateralized troves through the

liquidateTroves() function.

User can liquidate a custom list of troves through the batchLiquidateTroves()

function.

User can redeem collateral by burning debt tokens through the redeemCollateral()

function.

User can provide debt tokens to the Stability Pool through the provideToSP()

function.

User can withdraw debt tokens and claim collateral gains through the

withdrawFromSP() function.

User can transfer debt tokens to a valid recipient (not zero address and not the token

contract itself) through the transfer() function.

User can transfer debt tokens from another account (with allowance) to a valid

recipient through the transferFrom() function.

17/28

User can approve other addresses to spend debt tokens on their behalf through the

approve() function.

User can use off-chain signatures to authorize other addresses to use their debt

tokens through the permit() function.

User can give up existing role permissions through the renounceRole() function.

18/28

4 Findings

ACO-1 Centralization Risk

Severity: Major

Status: Fixed

Code Location:

contracts/AdminContract.sol;

contracts/ActivePool.sol;

contracts/DefaultPool.sol;

contracts/TroveManager.sol;

contracts/FeeCollector.sol

Descriptions:

Centralization risk was identified in the smart contract:

Admin can update collateral parameters and various debt related parameters.

Admin can modify any user's debt and collateral data.

Admin can increase the balance of any type of collateral.

Admin can transfer any amount of collateral to any address.

Admin can mint and burn any number of debt tokens at any address.

Suggestion:

It is recommended that measures be taken to reduce the risk of centralization, such as a

multi-signature mechanism.

Resolution:

The project explained that multisig wallets will be used for admin functionalities.

19/28

ACO-2 Insufficient Parameters Validation

Severity: Minor

Status: Fixed

Code Location:

contracts/AdminContract.sol#142-143

Descriptions:

The setCollateralParameters() function does not check whether MCR is less than CCR . If

MCR is set to be greater than CCR , it may cause the liquidation mechanism to fail.

Suggestion:

It is recommended to add validation for MCR and CCR to ensure that the set MCR is less

than CCR .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/28

ACO-3 Missing Check for Address

Severity: Minor

Status: Fixed

Code Location:

contracts/AdminContract.sol#324;

contracts/ActivePool.sol#131;

contracts/BorrowerOperations.sol#656;

contracts/FeeCollector.sol#328;

contracts/PriceFeed.sol#211;

contracts/SortedTroves.sol#415;

contracts/StabilityPool.sol#900;

contracts/DefaultPool.sol#94;

contracts/TroveManager.sol#702;

contracts/TroveManagerOperations.sol#969;

contracts/CollSurplusPool.sol#93

Descriptions:

In the authorzeUpgrade() function, there is no check to see if the entire address parameter

of newImplementation is not set to 0 address. If it is set to 0 address incorrectly, it can

cause a denial of service issue.

Suggestion:

It is recommended to add validity checks for newImplementation , such as ensuring it is a

known role or a non-zero address.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/28

ACO-4 Lack of Event Emit

Severity: Informational

Status: Fixed

Code Location:

contracts/AdminContract.sol#152

Descriptions:

Functions such as setIsActive() lack logs, making the contract's activities difficult to track.

Suggestion:

It is recommended to add event emission for this operation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/28

AMA-1 Addresses Not Updated

Severity: Major

Status: Acknowledged

Code Location:

contracts/Dependencies/AddressesMainnet.sol#14-22

Descriptions:

This project is modified based on the Gravita project, but the main network address of this

project has not been updated and instead uses the address of the Gravita project. This may

result in assets being transferred to the wrong address or causing denial of service issues

after project deployment.

Suggestion:

It is recommended to update the mainnet address of this project.

Resolution:

The client confirmed addresses will be updated after Mainnet deployment.

23/28

APO-1 Single-step Ownership Transfer Can be Dangerous

Severity: Minor

Status: Acknowledged

Code Location:

contracts/ActivePool.sol#20;

contracts/DefaultPool.sol#20;

contracts/CollSurplusPool.sol#13;

contracts/FeeCollector.sol#15;

contracts/AdminContract.sol#14;

contracts/SortedTroves.sol#43;

contracts/PDM/PDMStaking.sol#16;

contracts/PDM/CommunityIssuance.sol#14

Descriptions:

The transferOwnership() function inherited from the OwnableUpgradeable contract

carries the risk of single step permission transfer. Once called, the new owner will

immediately gain permission. If the new owner's address is entered incorrectly or if there

are security issues with the private key, it may lead to the contract being in an unmanaged

state.

Suggestion:

It is recommended to use a two-step permission transfer mechanism. Reference:

(https://github.com/OpenZeppelin/openzeppelin-contracts-

upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol).

24/28

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol

SPO-1 Initialize Could Be Front-Run

Severity: Medium

Status: Acknowledged

Code Location:

contracts/StabilityPool.sol#209;

contracts/CollSurplusPool.sol#25;

contracts/FeeCollector.sol#34;

contracts/DefaultPool.sol#30;

contracts/SortedTroves.sol#67;

contracts/ActivePool.sol#67;

contracts/TroveManager.sol#103;

contracts/PDM/PDMStaking.sol#52;

contracts/BorrowerOperations.sol#60;

contracts/TroveManagerOperations.sol#37;

contracts/AdminContract.sol#86;

contracts/PriceFeed.sol#40;

contracts/PDM/CommunityIssuance.sol#50

Descriptions:

In the contract, by calling the initialize function to initialize the contracts, there is a

potential issue that malicious attackers preemptively call the initialize function to initialize

and there is no access control verification for the initialize functions.

Suggestion:

It is suggested that the initialize function can be called only by privileged addresses or in

the same transaction immediately after the contract is created to avoid being maliciously

called by the attacker.

25/28

26/28

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

27/28

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

28/28

	874_page1.pdf
	874_page2.pdf

