
Audit Report

Thu Jun 26 2025

contact@bitslab.xyz https://twitter.com/scalebit_

Fireverse

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Fireverse Audit Report

1 Executive Summary

1.1 Project Information

Description Fireverse AI enables the transformation of AI-generated music
into on-chain music NFTs. Users can freely trade their music
NFT creations within the platform

Type NFT Marketplace

Auditors ScaleBit

Timeline Thu May 22 2025 - Thu Jun 26 2025

Languages Solidity

Platform EVM Chains

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/FireverseAI/contract

Commits 2639fbdb1a6e3017072db7437c71bd2d8a389732
61f6f9a6db6801330b87f528bccde21b53189cdf

1/16

https://github.com/FireverseAI/contract
https://github.com/FireverseAI/contract/tree/2639fbdb1a6e3017072db7437c71bd2d8a389732
https://github.com/FireverseAI/contract/tree/61f6f9a6db6801330b87f528bccde21b53189cdf

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

FVNFTM1 contracts/FireVerseNFTMarketplac
e.sol

27de9140c7592f029ba116ac67fcb
e04cd2ba527

FVNFT1 contracts/FireVerseNFT.sol 0ceff9311e3fc94ab34116bdf2358d
2f0c13f503

2/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 4 2 2

Informational 0 0 0

Minor 2 1 1

Medium 2 1 1

Major 0 0 0

Critical 0 0 0

3/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/16

2 Summary

This report has been commissioned by Fireverse to identify any potential issues and
vulnerabilities in the source code of the Fireverse smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 4 issues of varying severity, listed below.

ID Title Severity Status

FVN-1 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

FVN-2 call() Should be Used Instead of
transfer() on An Address Payable

Medium Acknowledged

FVN-3 The Signature does not Include the
Chain ID

Minor Acknowledged

FVN-4 setPlatformFee Parameter Range
Of FeeBps Is Incorrect

Minor Fixed

6/16

3 Participant Process

Here are the relevant actors with their respective abilities within the Fireverse Smart
Contract :
Admin

setTokenRoyalty : Specified NFT sets the royalty recipient and royalty ratio

setDefaultFeeNumerator �Set the default royalty ratio of the contract

allowPaymentToken �Add or remove supported payment tokens

allowNFT �Manage the NFT contract addresses that are allowed to be traded in the

market

setPlatformFee : Set the platform's handling fee receiving address and handling fee

ratio

User

mint/batchMint : Mint individual or batch NFTS

burn �Owner destroys the NFT

buy �Users purchase NFTS based on orders

cancelOrder/batchCancelOrder : Users cancel individual orders or batch orders

7/16

4 Findings

FVN-1 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

contracts/FireVerseNFTMarketplace.sol#12

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. Below is the official documentation explanation from OpenZeppelin�

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

The FireVerseNFTMarketplace contract inherits from the Ownable contract.

contract contract FireVerseNFTMarketplaceFireVerseNFTMarketplace is is EIP712EIP712,, OwnableOwnable,, ReentrancyGuardReentrancyGuard {{
 using using ECDSAECDSA forfor bytes32 bytes32;;
 using using SafeERC20SafeERC20 forfor IERC20IERC20;;
 using using AddressAddress forfor address payable address payable;;

In these contracts, transferring ownership is a single-step process, which poses the

aforementioned risk. https://github.com/OpenZeppelin/openzeppelin-contracts-

upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118

Suggestion:

It is recommended to use the Ownable2StepUpgradeable contract.

8/16

https://docs.openzeppelin.com/contracts/4.x/api/access
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L102-L118

Resolution:

This issue has been fixed. The client has adopted our suggestions.

9/16

FVN-2 call() Should be Used Instead of transfer() on An
Address Payable

Severity: Medium

Status: Acknowledged

Code Location:

contracts/FireVerseNFTMarketplace.sol#119-121

Descriptions:

The transfer() and send() functions forward a fixed amount of 2300 gas. Historically, it has

often been recommended to use these functions for value transfers to guard against

reentrancy attacks. However, the gas cost of EVM instructions may change significantly

during hard forks which may break already deployed contract systems that make fixed

assumptions about gas costs. For example. EIP 1884 broke several existing smart contracts

due to a cost increase of the SLOAD instruction. https://swcregistry.io/docs/SWC-134

In the buy() function, the protocol utilizes the sendValue() method to transfer the ETH to

the target address.

 ifif ((orderorder..paymentTokenpaymentToken ==== addressaddress((00)))) {{
 // Native Token// Native Token
 requirerequire((msgmsg..valuevalue ==== order order..priceprice,, "Incorrect Native Token amount""Incorrect Native Token amount"));;
 ifif ((royaltyAmount royaltyAmount >> 00)) payablepayable((royaltyRecipientroyaltyRecipient))..sendValuesendValue((royaltyAmountroyaltyAmount));;
 ifif ((platformFee platformFee >> 00)) payablepayable((platformFeeRecipientplatformFeeRecipient))..sendValuesendValue((platformFeeplatformFee));;
 payablepayable((orderorder..sellerseller))..sendValuesendValue((sellerAmountsellerAmount));;
 }} elseelse {{
 // ERC20// ERC20
 IERC20IERC20 token token == IERC20IERC20((orderorder..paymentTokenpaymentToken));;
 ifif ((royaltyAmount royaltyAmount >> 00)) token token..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, royaltyRecipient royaltyRecipient,,
royaltyAmountroyaltyAmount));;
 ifif ((platformFee platformFee >> 00)) token token..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, platformFeeRecipient platformFeeRecipient,,
platformFeeplatformFee));;

10/16

https://swcregistry.io/docs/SWC-134

 tokentoken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, order order..sellerseller,, sellerAmount sellerAmount));;
 }}

The use of the deprecated sendValue() function for an address will inevitably make the

transaction fail when:

The claimer smart contract does not implement a payable function.

The claimer smart contract does implement a payable fallback which uses more than 2300

gas unit.

The claimer smart contract implements a payable fallback function that needs less than 2300

gas units but is called through proxy, raising the call's gas usage above 2300.

Additionally, using higher than 2300 gas might be mandatory for some multisig wallets.

Suggestion:

It is recommended to use call() instead of sendValue() , but be sure to respect the CEI

pattern and/or add re-entrancy guards, as several hacks already happened in the past due

to this recommendation not being fully understood.

11/16

FVN-3 The Signature does not Include the Chain ID

Severity: Minor

Status: Acknowledged

Code Location:

contracts/FireVerseNFTMarketplace.sol#79-94

Descriptions:

The verify() function is used to verify signatures. However, the signature does not include

the chain ID, which means the signed message could potentially be replayed on a different

blockchain

functionfunction verifyverify((OrderOrder calldata order calldata order,, bytes calldata signature bytes calldata signature)) publicpublic view view returnsreturns ((boolbool)) {{
 bytes32 structHash bytes32 structHash == keccak256keccak256((
 abiabi..encodeencode((
 ORDER_TYPEHASHORDER_TYPEHASH,,
 orderorder..sellerseller,,
 orderorder..nftnft,,
 orderorder..tokenIdtokenId,,
 orderorder..priceprice,,
 orderorder..paymentTokenpaymentToken,,
 orderorder..noncenonce,,
 orderorder..expiryexpiry
))
));;
 bytes32 digest bytes32 digest == _hashTypedDataV4_hashTypedDataV4((structHashstructHash));;
 returnreturn digest digest..recoverrecover((signaturesignature)) ==== order order..sellerseller;;
 }}

Suggestion:

It is recommended to incorporate the chain ID into the ORDER_TYPEHASH

12/16

FVN-4 setPlatformFee Parameter Range Of FeeBps Is
Incorrect

Severity: Minor

Status: Fixed

Code Location:

contracts/FireVerseNFTMarketplace.sol#72-77

Descriptions:

In the function setPlatformFee, the maximum value of the feeBps parameter is 10,000

 functionfunction setPlatformFeesetPlatformFee((address recipientaddress recipient,, uint96 feeBps uint96 feeBps)) external onlyOwner external onlyOwner {{
 requirerequire((feeBps feeBps <=<= 1000010000,, "Over 100%""Over 100%"));;
 platformFeeRecipient platformFeeRecipient == recipient recipient;;
 platformFeeBps platformFeeBps == feeBps feeBps;;
 emit emit PlatformFeeUpdatedPlatformFeeUpdated((recipientrecipient,, feeBps feeBps));;
 }}

When calculating the transaction fee and other charges of the function buy, if platformFee is

set to 10,000, sellerAmount parameter will be less than 0, it will cause the function to fail to

run

((address royaltyRecipientaddress royaltyRecipient,, uint256 royaltyAmount uint256 royaltyAmount)) == _getRoyalty_getRoyalty((orderorder..nftnft,,
orderorder..tokenIdtokenId,, order order..priceprice));;
uint256 platformFee uint256 platformFee == ((orderorder..priceprice ** platformFeeBps platformFeeBps)) // 10_00010_000;;
uint256 sellerAmount uint256 sellerAmount == order order..priceprice -- royaltyAmount royaltyAmount -- platformFee platformFee;;

Suggestion:

Modify the parameter range and detect the sellerAmount value�

requirerequire((feeBps feeBps << 1000010000,, "Over 100%""Over 100%"));;

Resolution:

13/16

This issue has been fixed. The client has adopted our suggestions.

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	888_page1.pdf
	888_page2.pdf

