
Audit Report

Mon Jul 07 2025

contact@bitslab.xyz https://twitter.com/scalebit_

Taker Protocol

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Taker Protocol Audit Report

1 Executive Summary

1.1 Project Information

Description Taker Crotroller and Taker Node focuse on asset
management and staking.

Type DeFi

Auditors ScaleBit

Timeline Thu Jul 03 2025 - Fri Jul 04 2025

Languages Solidity, Rust

Platform Taker

Methods Dependency Check, Fuzzing, Static Analysis, Manual Review

Source Code https://github.com/takerprotocol/token-controller
https://github.com/takerprotocol/taker-node

Commits https://github.com/takerprotocol/token-controller:

2b84a27f768601a33e3461537d6b122d2a8950c0
253205ca7483a55c71502ef8fe41b9ff0d6ddfe0

https://github.com/takerprotocol/taker-node:

d99d2927ff372941090ca8ec305afd6f47311aaf
74e0b69e6daec9b120618e158a263721132ec221

1/19

https://github.com/takerprotocol/token-controller
https://github.com/takerprotocol/taker-node
https://github.com/takerprotocol/token-controller/tree/2b84a27f768601a33e3461537d6b122d2a8950c0
https://github.com/takerprotocol/token-controller/tree/253205ca7483a55c71502ef8fe41b9ff0d6ddfe0
https://github.com/takerprotocol/taker-node/tree/d99d2927ff372941090ca8ec305afd6f47311aaf
https://github.com/takerprotocol/taker-node/tree/74e0b69e6daec9b120618e158a263721132ec221

1.2 Files in Scope

The following are the directories of the original reviewed files.

Directory

https://github.com/takerprotocol/token-controller/contracts

https://github.com/takerprotocol/taker-node/pallets/precompiles

https://github.com/takerprotocol/taker-node/pallets/asset-currency

2/19

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 7 0

Informational 0 0 0

Minor 5 5 0

Medium 2 2 0

Major 0 0 0

Critical 0 0 0

3/19

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Integer overflow/underflow

Infinite Loop

Infinite Recursion

Race Condition

Traditional Web Vulnerabilities

Memory Exhaustion Attack

Disk Space Exhaustion Attack

Side-channel Attack

Denial of Service

Replay Attacks

Double-spending Attack

Eclipse Attack

Sybil Attack

Eavesdropping Attack

Business Logic Issues

Contract Virtual Machine Vulnerabilities

Coding Style Issues

4/19

1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis",
"Fuzz Testing", and "Manual Review" to conduct a comprehensive security test on the
code in a manner closest to real attacks. The main entry points and scope of the security
testing are specified in the "Files in Scope", which can be expanded beyond the scope
according to actual testing needs. The main types of this security audit include:

(1) Dependency Check

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

(2) Automated Static Code Analysis

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

(3) Fuzz Testing

A large amount of randomly generated data was inputted into the software to try and trigger
potential errors and exceptional paths.

(4) Manual Review

The scope of the code is explained in section 1.2.

(5) Audit Process

Clarify the scope, objectives, and key requirements of the audit.

Collect related materials such as software documentation, architecture diagrams, and

lists of dependency libraries to provide background information for the audit.

Use automated tools to generate a list of the software's dependency libraries and

employ professional tools to scan these libraries for security vulnerabilities, identifying

outdated or known vulnerable dependencies.

Select and configure automated static analysis tools suitable for the project, perform

automated scans to identify security vulnerabilities, non-standard coding, and

5/19

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

Design a series of fuzz testing cases aimed at testing the software's ability to handle

exceptional data inputs. Analyze the issues found during the testing to determine the

defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code

review plan, identifying the focus of the review. Experienced auditors perform line-by-

line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a

timely manner. The code owners should actively cooperate (this may include providing

the latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely

manner for both the audit team and the code owner.

6/19

2 Summary

This report has been commissioned by Taker Controller with the objective of identifying any
potential issues and vulnerabilities within the source code of the Taker Protocol repository,
as well as in the repository dependencies that are not part of an officially recognized library.
In this audit, we have employed the following techniques to identify potential vulnerabilities
and security issues:

(1) Dependency Check

A comprehensive analysis of the software’s dependency libraries was conducted using the
dependency check tool.

(2) Automated Static Code Analysis

The code quality was examined using a code scanner.

(3) Fuzz Testing

Based on the fuzz tool and by writing harnesses.

(4) Manual Code Review

Manually reading and analyzing code to uncover vulnerabilities and enhance overall quality.

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

ACU-1 Inconsistent Type Mapping
Between Solidity Interface and Rust
Implementation

Minor Fixed

AMA-1 Initialize Could Be Front-Run Medium Fixed

AMA-2 Inconsistent Reentrancy Guard
Implementation in Token Exchange

Minor Fixed

7/19

Functions

AMA-3 Missing Event Emission Minor Fixed

IMP-1 converted_payout May Exceed
Total Issuance Cap

Medium Fixed

VET-1 setMinter Does Not Update
Whitelist When Changing Minter
Address

Minor Fixed

VET-2 Redundant whenLive Check in
burn Function

Minor Fixed

8/19

3 Participant Process

Here are the relevant actors with their respective abilities within the Taker Protocol
repository :
Admin

Admin can set tToken , vToken , tGas , tStaking , tGasRatio , isMulRatio .

Admin can set live through the toggleLive function.

Admin can add or remove whiteList .

Minter

Minter can mint or burn VETaker .

User

User can use exchangeVToTToken , exchangeTToVToken ,

exchangeTgasFromTToken , exchangeTgasFromVToken functions to exchange

tokens.

User can use claimTToken to exchange tokens tToken to vToken .

User can use stakingWithNominate to exchange tokens vToken to tToken and call

bondAndNominate remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondExtra remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondExtraAndNominate remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondAndValidate remotely through tStaking .

User can use burnT/mintT/mintTGas functions to call the burn/mintTo interface of

ITToken and ITgas .

9/19

4 Findings

ACU-1 Inconsistent Type Mapping Between Solidity Interface
and Rust Implementation

Severity: Minor

Discovery Methods:

Status: Fixed

Code Location:

pallets/precompiles/src/asset_currency.rs#27-120;

pallets/precompiles/src/native_currency.rs#31-64;

pallets/precompiles/src/staking.rs#47-559

Descriptions:

In the provided Rust code for a precompile function mint_to , there is a discrepancy

between the types used in the Solidity interface (uint256) and those used in the Rust

implementation (u128). This inconsistency can lead to unexpected behavior or errors when

interacting with the contract from an EVM-compatible environment, especially if the value

exceeds the maximum representable by u128.Except for mint_to , several functions are type

issues.

Suggestion:

To ensure consistency and prevent potential issues related to type mismatches, it's

recommended to align the Rust implementation with the Solidity interface by using a type

that matches uint256.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/19

AMA-1 Initialize Could Be Front-Run

Severity: Medium

Discovery Methods:

Status: Fixed

Code Location:

contracts/AssetsManager.sol#73-80

Descriptions:

In the contract, by calling the initialize function to initialize the contracts, there is a

potential issue that malicious attackers preemptively call the initialize function to initialize

and there is no access control verification for the initialize functions.

Suggestion:

It is suggested that the initialize function can be called only by privileged addresses or in

the same transaction immediately after the contract is created to avoid being maliciously

called by the attacker.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/19

AMA-2 Inconsistent Reentrancy Guard Implementation in
Token Exchange Functions

Severity: Minor

Discovery Methods:

Status: Fixed

Code Location:

contracts/AssetsManager.sol#123-147

Descriptions:

Several functions in the contract implement reentrancy protection using the

nonReentrant modifier, while others lack this safeguard. Specifically, exchangeVToTToken

and exchangeTToVToken are protected against reentrancy attacks, but functions such as

exchangeTgasFromTToken , exchangeTgasFromVToken , and exchangeTgasToVToken do

not have the nonReentrant modifier applied.

Suggestion:

Ensure consistent use of reentrancy protection across all externally callable functions that

modify critical state variables or handle token transfers. Apply the nonReentrant modifier to

all relevant functions to maintain a uniform security posture and reduce the risk of

reentrancy-based exploits.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/19

AMA-3 Missing Event Emission

Severity: Minor

Discovery Methods:

Status: Fixed

Code Location:

contracts/AssetsManager.sol#258-315

Descriptions:

The functions stakingBondAndValidate and stakingBondExtraAndValidate do not emit any

events upon successful execution, despite performing critical actions such as exchanging

tokens and interacting with the staking module via delegatecall. This lack of event emission

reduces transparency and makes it difficult for off-chain systems, wallets, or explorers to

track user actions or provide proper feedback.

Suggestion:

Add explicit event emissions at the end of both functions to log key actions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/19

IMP-1 converted_payout May Exceed Total Issuance Cap

Severity: Medium

Discovery Methods: Manual Review

Status: Fixed

Code Location:

pallets/staking/src/pallet/impls.rs#389

Descriptions:

In the end_era function, the validator payout is initially calculated using :

letlet ((mut validator_payoutmut validator_payout,, remainder remainder)) ==
TT::::EraPayoutEraPayout::::era_payoutera_payout((stakedstaked,, issuance issuance,, era_duration era_duration));;

letlet mut converted_payout mut converted_payout:: u128 u128 == validator_payout validator_payout..saturated_intosaturated_into(());;
letlet ratio ratio == SelfSelf::::rewards_ratiorewards_ratio(());;

 ifif ratio ratio..11 !=!= 00 {{
 converted_payout converted_payout ==
converted_payoutconverted_payout..saturating_mulsaturating_mul((ratioratio..00))..saturating_divsaturating_div((ratioratio..11));;
 }} elseelse {{

converted_payout converted_payout == 00;;
}}

era_payout which enforces a total issuance cap (RELEASE_LIMIT) to prevent minting beyond

the allowed limit.

However, the result of era_payout is subsequently scaled by a configurable reward ratio:

converted_payout converted_payout == converted_payout converted_payout..saturating_mulsaturating_mul((ratioratio..00))..saturating_divsaturating_div((ratioratio..11));;

This scaling happens after the issuance cap has been applied, meaning that if the ratio is

greater than 1, it can inflate the totle payout amount beyond the RELEASE_LIMIT .

Suggestion:

14/19

validate the capped limit after applying the ratio in end_era .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/19

VET-1 setMinter Does Not Update Whitelist When Changing
Minter Address

Severity: Minor

Discovery Methods: Manual Review

Status: Fixed

Code Location:

contracts/VETaker.sol#80

Descriptions:

The setMinter function allows the contract owner to update the minter address:

 functionfunction setMintersetMinter((address _minteraddress _minter)) external onlyOwner external onlyOwner {{
 minter minter == _minter _minter;;
 }}

However, this function does not update any associated whitelist.

Specifically, it does not remove the previous minter from the whitelist, nor does it add the

new minter address to the whitelist.

Suggestion:

Modify the setMinter function to update the whitelist accordingly.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/19

VET-2 Redundant whenLive Check in burn Function

Severity: Minor

Discovery Methods:

Status: Fixed

Code Location:

contracts/VETaker.sol#67-71

Descriptions:

In the burn function, there is a check to ensure that the caller is the minter

(require(msg.sender == minter, "VETaker: only minter");) and an additional modifier

whenLive is applied to the function. The whenLive modifier presumably checks if the

contract is operational or live. However, given that the primary security check is already

ensuring that only the designated minter can call this function, applying the whenLive

check may be considered redundant for this specific scenario.

Suggestion:

To avoid redundancy and streamline the function's execution flow, consider removing the

whenLive modifier from the burn function.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/19

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information or assets at risk, and often are not directly exploitable. All major issues

should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information or assets at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

18/19

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

19/19

	900_page1.pdf
	900_page2.pdf

