
Audit Report

Fri Dec 26 2025

contact@bitslab.xyz https://twitter.com/scalebit_

Dragon Capsule

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Dragon Capsule Audit Report

1 Executive Summary

1.1 Project Information

Description GSCNX is a security-focused ERC20 token on the BNB Smart
Chain, optimized for PancakeSwap V3 and V4. The protocol
features dynamic taxation, anti-bot protections, and
transaction limits to ensure market stability, with
infrastructure supporting seamless router and bridge
integration. The contract is officially deployed at
0x34975Bc5B7BFE7a542C1538dB0282A44B64e8D3E (TX:
0xd74b5203b2949d23dd57d4f2b3bd45904c4538849a4531cbb
f463c5fc8820b8b).

Type Token

Auditors Fishmen,N0n3,Nebu1a

Timeline Thu Dec 25 2025 - Thu Dec 25 2025

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

1/18

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

GSCNX GSCNX.sol a1598e65c3cb92cc5bd096d0e6de
303c100e1148

2/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 5 5 0

Centralization 1 1 0

Critical 0 0 0

Major 2 2 0

Medium 1 1 0

Minor 0 0 0

Informational 1 1 0

3/18

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/18

2 Summary

This report has been commissioned by Dragon Capsule to identify any potential issues and
vulnerabilities in the source code of the Dragon Capsule smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 5 issues of varying severity, listed below.

ID Title Severity Status

GSC-1 Missing Event Emission within
setAntiSnipeEnabled

Informational Fixed

GSC-2 Fee Evasion Vulnerability via
Precision Loss

Major Fixed

GSC-3 Centralization Risks Centralizatio
n

Fixed

GSC-4 Inconsistent maxWallet Validation
Logic in GSCNX

Major Fixed

GSC-5 The Circumvention of Ownership
Waiver Restrictions

Medium Fixed

6/18

3 Participant Process

Here are the relevant actors with their respective abilities within the Dragon Capsule Smart
Contract :

1. Owner / Administrative Process
The Owner holds the highest privilege and manages the contract's lifecycle.

Initialization: Sets maxTxAmount , maxWallet , and taxWallet (defaults to

deployment address).

Configuration: Whitelists isLiquidityRouter (e.g., V4 Vaults) and marks

automatedMarketMakerPairs .

Launch: Calls enableTrading() (irreversible). This starts the tradingStartBlock and

tradingStartTime parameters.

Exit Strategy: Can renounceOwnership() , but only after trading is active, ensuring the

contract isn't left in a locked state.

2. User (Trader) Process
Users interact with the token primarily through decentralized exchanges (PancakeSwap).

Buying: Subject to initialBuyFee (launch phase) or FINAL_BUY_FEE (5% after 15

mins).

Selling: Currently subject to 0% tax (FINAL_SELL_FEE).

Compliance: Transfers must respect maxTxAmount and maxWallet limits.

Anti-Snipe: During the first 8 blocks post-launch, users face stricter transaction limits

(1/5th of maxTxAmount).

3. Liquidity Infrastructure Process
Addresses marked as isLiquidityRouter or automatedMarketMakerPairs have unique
roles.

Exempt Routers: Bypasses fees and limits entirely. This is critical for V4 Hooks or

cross-chain bridges where internal accounting (flash accounting) must not be

interrupted by taxes.

7/18

AMM Pairs: Act as the "trigger" for buy/sell logic. Transfers from a pair are flagged as

buys; transfers to a pair (not from an exempt address) are flagged as sells.

4. Fee & Treasury Process

Collection: On every taxable buy, the contract splits the transfer: feeAmount goes to

the taxWallet , and the remainder goes to the user.

Decimals: The contract uses 6 decimals.

8/18

4 Findings

GSC-1 Missing Event Emission within setAntiSnipeEnabled

Severity: Informational

Status: Fixed

Code Location:

GSCNX.sol#126-128

Descriptions:

The setAntiSnipeEnabled function in the GSCNX contract is used to update the

antiSnipeEnabled state variable, which controls critical anti-snipe mechanisms and

transaction limit protection logic within the contract. However, this function does not

emit any event when modifying this critical configuration parameter.

The absence of an event emission prevents off-chain monitoring systems, decentralized

applications (dApps), and community users from performing real-time and intuitive

monitoring of the anti-snipe protection switch’s status changes. This lack of transparency

increases the risk that accidental or malicious configuration changes made by the

administrator go undetected and significantly reduces the system’s auditability and

operational transparency.

Suggestion:

It is recommended to introduce and emit a dedicated event (e.g.,

AntiSnipeEnabledUpdated) within the setAntiSnipeEnabled function. Emitting this event

whenever the antiSnipeEnabled status changes will allow off-chain listeners to track critical

configuration updates reliably and improve transparency for sensitive contract operations.

Resolution:

The team adopted our advice and fixed this issue by adding the setAntiSnipeEnabled event

emission. The hash of the improved code is: a1598e65c3cb92cc5bd096d0e6de303c100e1148.

9/18

GSC-2 Fee Evasion Vulnerability via Precision Loss

Severity: Major

Status: Fixed

Code Location:

GSCNX.sol#234

Descriptions:

The _update function calculates the transaction fee using the formula feeAmount =

amount * fee / 10000 . With the FINAL_BUY_FEE configured at 500 (5%), this calculation is

mathematically equivalent to amount / 20 .

Due to Solidity's integer division mechanism, any transaction amount less than 20 results

in a feeAmount of 0 (e.g., 19 * 500 / 10000 = 0).

This precision loss creates a loophole that allows users to bypass the fee mechanism. An

attacker could exploit this by splitting a large purchase into a massive number of micro-

transactions, each with an amount less than 20 (e.g., 19). By executing these dust

transactions repeatedly—potentially using multiple addresses to avoid rate limits—the

attacker can accumulate tokens without paying the required 5% tax.

 ifif ((isBuy isBuy &&&& buyTaxEnabled buyTaxEnabled)) {{
 // Time-based dynamic fee// Time-based dynamic fee
 ifif ((blockblock..timestamptimestamp >> tradingStartTime tradingStartTime ++ 900900)) {{
 feeAmount feeAmount == amount amount ** FINAL_BUY_FEEFINAL_BUY_FEE // 1000010000;; // 5%// 5%
 }} elseelse {{
 feeAmount feeAmount == amount amount ** initialBuyFee initialBuyFee // 1000010000;; // Variable (Default 20%)// Variable (Default 20%)
 }}
 }}

Suggestion:

It is recommended that the calculation logic for feeAmount be revised.

Resolution:

10/18

The team adopted our advice and fixed this issue by revising the rate calculation logic using

the rounding up algorithm. The hash of the improved code is:

a1598e65c3cb92cc5bd096d0e6de303c100e1148.

11/18

GSC-3 Centralization Risks

Severity: Centralization

Status: Fixed

Code Location:

GSCNX.sol

Descriptions:

The GSCNX contract grants the owner role extensive privileges to modify critical protocol

parameters. Several centralization risks were identified in the protocol:

1. Fee Configuration Control: The owner can adjust the initialBuyFee up to 25% and

toggle the buyTaxEnabled status. This allows the owner to significantly alter the cost

of trading for users.

2. Limit Adjustments: The owner has the authority to modify maxTxAmount and

maxWallet via setLimits . While there are lower bounds to prevent complete

restriction, the owner can still tighten these limits to the minimum allowed values.

3. Privileged Exemptions: Through setLiquidityRouter , the owner can whitelist arbitrary

addresses to bypass all fees and transaction limits. This power could be used to grant

unfair advantages to specific users or wallets.

4. Tax Destination Control: The owner can arbitrarily change the taxWallet via

setTaxWallet , controlling the flow of protocol revenue.

5. Market Definition: The owner determines which addresses are treated as automated

market makers via setAutomatedMarketMakerPair , which directly affects which

transactions are taxed.

Suggestion:

It is recommended to transfer the ownership to a multi-signature wallet or a DAO

governance contract to mitigate the risk of single-point failure or malicious actions by a

12/18

single administrator. Additionally, consider using a timelock mechanism for sensitive

parameter changes to give the community time to react to updates.

Resolution:

The team mitigated the centralization risks and adopted our recommendation by

transferring ownership to a 3/5 Gnosis Safe Multi-Signature wallet

(0xCb179cf0703C2923f266316cEa0f1d7E4B76571C) to mitigate single-point failures. To

prevent collusion, the signer keys are distributed among independent representatives:

Signer 1 (Super Hub Representative):
0x129A127C0927999a927aE9654A2B1947f142673b

Signer 2 (Security and Audit Representative):
0x49fe1ea9cbb1b70e0bf3a88f12ba245b63c3a7d6

Signer 3 (Laboratory Representative):
0xe0e919aB841d42C8A3C4058788F3E1AC7111Cd02

Signer 4 (Legal Compliance Representative):
0x333904c4bff4ef5bb9b78abf1841851dd646dc7e

Signer 5 (Long-term Ecosystem Representative):
0xE99238c4Ff9968116FC71232BA09Cae8f36690b9

Additionally, the team provided the following clarifications and measures:

1. Fee Configuration: The adjustable fee mechanism is a temporary Anti-Snipe measure

restricted to the first 15 minutes of trading, after which the buy tax is automatically

fixed at 5%.

2. Privileged Exemptions: The setLiquidityRouter function is strictly limited to officially

recognized routers (e.g., PancakeSwap V4) for forward compatibility. Any modification

requires 3/5 Multi-Signature execution and adheres to the following protocols:

Transparent Process: All operations will be publicly disclosed in advance through

official channels (Website, Twitter, Telegram) to ensure community verification.

Security Assessment: Before whitelisting, the team will carefully evaluate the

target router contract to ensure its behavior is controllable and does not disrupt

13/18

existing fee and transaction control logic.

3. Token Custody: All undistributed tokens have been transferred to the Gnosis Safe

Multi-Signature wallet for secure custody.

4. Transparency & Governance: The team has open-sourced the codebase at

https://github.com/youtz88/GSCNX and disclosed the token allocation plan. The

project is committed to a roadmap transitioning towards full decentralization,

eventually renouncing ownership.

14/18

https://github.com/youtz88/GSCNX

GSC-4 Inconsistent maxWallet Validation Logic in GSCNX

Severity: Major

Status: Fixed

Code Location:

GSCNX.sol#83,124

Descriptions:

The GSCNX contract appears to establish a design standard where maxWallet is 1% of the

total supply. This is evidenced by the constructor initialization maxWallet = (TOTAL_SUPPLY

* 10) / 1000; and the explicit comment // Max Wallet: 1.0% of Total Supply .

However, the validation logic in the setLimits function contains a likely calculation error or

inconsistency. The line require(_maxWallet >= TOTAL_SUPPLY / 1000, ...) enforces a

minimum limit of only 0.1% (1/1000), which is 10 times lower than the 1% (10/1000)

established in the constructor. This discrepancy suggests that the developer may have

missed a multiplication factor (e.g., * 10) when writing the validation logic. If left

uncorrected, this allows the wallet limit to be set significantly lower than intended,

potentially disrupting normal token usage.

Suggestion:

It is recommended to correct the validation logic in setLimits to _maxWallet >=

(TOTAL_SUPPLY * 10) / 1000 to align with the initial 1% limit design, as the current

TOTAL_SUPPLY / 1000 (0.1%) appears to be a calculation error. This correction will maintain

consistency between the documented design intent and the enforced logic.

Resolution:

The team adopted our advice and fixed this issue by correcting the validation logic in

setLimits to be consistent with the initial 1% limit design. The hash of the improved code is:

a1598e65c3cb92cc5bd096d0e6de303c100e1148.

15/18

GSC-5 The Circumvention of Ownership Waiver Restrictions

Severity: Medium

Status: Fixed

Code Location:

GSCNX.sol

Descriptions:

The contract rewrites the renounceOwnership function inherited from the OpenZeppelin

Ownable contract, restricting that ownership can only be relinquished after trading has

been activated (tradingActive == true). This measure aims to prevent project owners from

relinquishing control before the token is listed for trading. However, the contract does not

rewrite the similarly inherited transferOwnership function. A malicious or negligent owner

could call transferOwnership(address(0)) , which has precisely the same effect as calling

renounceOwnership() : transferring ownership to the zero address, thereby permanently

relinquishing control. Since the transferOwnership function lacks corresponding checks,

the restriction set by renounceOwnership can be easily circumvented, rendering this

security measure ineffective.

Suggestion:

To enforce the restriction, the transferOwnership(address newOwner) function must be

rewritten concurrently. In the new implementation, it is necessary to check whether

newOwner is address(0). If true, the same require(tradingActive, ...) check applied to

renounceOwnership should be implemented. This will ensure all paths for relinquishing

ownership are subject to the same security policy constraints.

Resolution:

The team adopted our advice and fixed this issue by rewriting the transferOwnership

function. The hash of the improved code is: a1598e65c3cb92cc5bd096d0e6de303c100e1148.

16/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

17/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

18/18

	1075_page1.pdf
	1075_page2.pdf

