
Audit Report

Tue Feb 06 2024

contact@scalebit.xyz https://twitter.com/scalebit_

B² Network zkEVM

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/16

B² Network zkEVM Audit Report

1 Executive Summary

1.1 Project Information

Description B² Network is a Bitcoin layer2 network that bolsters
transaction speed and broadens application diversity without
sacrificing security.

Type L2

Auditors ScaleBit

Timeline Mon Jan 29 2024 - Mon Feb 05 2024

Languages Go, C++

Platform B² Network

Methods Dependency Check, Fuzzing, Static Analysis, Manual Review

Source Code https://github.com/b2network/b2-zkevm-prover
https://github.com/b2network/b2-zkevm-node

Commits https://github.com/b2network/b2-zkevm-prover:

7accb0b5ff5afb9b2e597cd3059a850dc1d56aa4

https://github.com/b2network/b2-zkevm-node:

bd1db00dc6acc75de1c63e9fce0171c03a0c28f1

https://github.com/b2network/b2-zkevm-prover
https://github.com/b2network/b2-zkevm-node
https://github.com/b2network/b2-zkevm-prover/tree/7accb0b5ff5afb9b2e597cd3059a850dc1d56aa4
https://github.com/b2network/b2-zkevm-node/tree/bd1db00dc6acc75de1c63e9fce0171c03a0c28f1

2/16

1.2 Files in Scope

The following are the directorys of the original reviewed files.

Directory

https://github.com/b2network/b2-zkevm-node/sequencer

https://github.com/b2network/b2-zkevm-node/ethtxmanager

https://github.com/b2network/b2-zkevm-node/etherman

https://github.com/b2network/b2-zkevm-node/jsonrpc

https://github.com/b2network/b2-zkevm-prover/src

3/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 0 2

Informational 2 0 2

Minor 0 0 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

4/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Integer overflow/underflow

Infinite Loop

Infinite Recursion

Race Condition

Traditional Web Vulnerabilities

Memory Exhaustion Attack

Disk Space Exhaustion Attack

Side-channel Attack

Denial of Service

Replay Attacks

Double-spending Attack

Eclipse Attack

Sybil Attack

Eavesdropping Attack

Business Logic Issues

Contract Virtual Machine Vulnerabilities

Coding Style Issues

5/16

1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis",
"Fuzz Testing", and "Manual Review" to conduct a comprehensive security test on the
code in a manner closest to real attacks. The main entry points and scope of the security
testing are specified in the "Files in Scope", which can be expanded beyond the scope
according to actual testing needs. The main types of this security audit include:

(1) Dependency Check

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

(2) Automated Static Code Analysis

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

(3) Fuzz Testing

A large amount of randomly generated data was inputted into the software to try and trigger
potential errors and exceptional paths.

(4) Manual Review

The scope of the code is explained in section 1.2.

(5) Audit Process

Clarify the scope, objectives, and key requirements of the audit.

Collect related materials such as software documentation, architecture diagrams, and

lists of dependency libraries to provide background information for the audit.

Use automated tools to generate a list of the software's dependency libraries and

employ professional tools to scan these libraries for security vulnerabilities, identifying

outdated or known vulnerable dependencies.

Select and configure automated static analysis tools suitable for the project, perform

automated scans to identify security vulnerabilities, non-standard coding, and

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

6/16

Design a series of fuzz testing cases aimed at testing the software's ability to handle

exceptional data inputs. Analyze the issues found during the testing to determine the

defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code

review plan, identifying the focus of the review. Experienced auditors perform line-by-

line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a

timely manner. The code owners should actively cooperate (this may include providing

the latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely

manner for both the audit team and the code owner.

7/16

2 Summary

This report has been commissioned by B² Network with the objective of identifying any
potential issues and vulnerabilities within the source code of the B² Network zkEVM
repository, as well as in the repository dependencies that are not part of an officially
recognized library. In this audit, we have employed the following techniques to identify
potential vulnerabilities and security issues:

(1) Dependency Check

A comprehensive analysis of the software’s dependency libraries was conducted using the
Govulncheck tool.

(2) Automated Static Code Analysis

The code quality was examined using a code scanner.
For Go language, risk codes detected include:

Look for hard-coded credentials

Bind to all interfaces

Audit errors not checked

Potential integer overflow caused by strconv.Atoi result conversion to int16/32

Potential DoS vulnerability via decompression bomb

Potential directory traversal

Use of net/http serve function that has no support for setting timeouts

SQL query construction using format string

SQL query construction using string concatenation

Audit use of command execution

File path provided as taint input

File traversal when extracting zip/tar archive

Detect the usage of DES, RC4, MD5, or SHA1

8/16

Look for bad TLS connection settings

Ensure minimum RSA key length of 2048 bits

Insecure random number source (rand)

Slice access out of bounds

Array access out of bounds

Other types of risk codes

For C++ language, risk codes detected include:

Bounds checking

Check function usage

Exception safety

IO using format string

Leaks (auto variables)

Memory leaks (address not taken)

Memory leaks (class variables)

Memory leaks (function variables)

Memory leaks (struct members)

Null pointer

Uninitialized variables

Unused functions

Unused var

Using postfix operators

Other types of risk codes

(3) Fuzz Testing

Based on the go-fuzz tool and by writing harnesses, we have performed fuzz testing on the
following targets:

b2-zkevm-node/jsonrpc

https://github.com/b2network/b2-zkevm-node/tree/dev/jsonrpc

9/16

b2-zkevm-node/etherman

(4) Manual Code Review

The b2-zkevm-node is based on the 0xPolygonHermez/zkevm-node project, and the b2-
zkevm-prover is based on the 0xPolygonHermez/zkevm-prover project. Given that these
projects have already been audited and only minor modifications have been made to the b2-
zkevm-node and b2-zkevm-prover repositories, our scope of manual code review was quite
limited. The primary focus of the manual code review was:

b2-zkevm-node/etherman

b2-zkevm-node/synchronizer

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

GO-1 Using Unsafe Dependencies. Informational Acknowledged

FNE-1 Mismatched Variable Names:
Function Parameters vs
Implementation.

Informational Acknowledged

https://github.com/b2network/b2-zkevm-node/tree/main/etherman
https://github.com/b2network/b2-zkevm-node/tree/main/etherman
https://github.com/b2network/b2-zkevm-node/tree/main/synchronizer

10/16

3 Participant Process

Here are the relevant actors with their respective abilities within the B² Network zkEVM
repository :

b2-zkevm-node
Accepts JSON-RPC requests from users, executes EVM transactions, requests zero-
knowledge proofs from the b2-zkevm-prover, and sends state changes and zero-knowledge
proofs to the underlying EVM-compatible chain.
The diagram below shows its architecture.

Below is an introduction to the various functional modules inside the b2-evm-node.

11/16

(JSON) RPC: an HTTP interface that allows users (dApps, metamask, etherscan, ...) to

interact with the node. Fully compatible with Ethereum RPC + some extra custom

endpoints specifics of the network. It interacts with the state (to get data and process

transactions) as well as the pool (to store transactions)

L2GasPricer: it fetches the L1 gas price and applies some formula to calculate the gas

price that will be suggested for the users to use for paying fees on L2. The suggestions

are stored on the pool, and will be consumed by the rpc

Pool: DB that stores transactions by the RPC to be selected/discarded by the

sequencer later on

Sequencer: responsible for building the trusted state. To do so, it gets transactions

from the pool and puts them in a specific order. It needs to take care of opening and

closing batches while trying to make them as full as possible. To achieve this it needs to

use the executor to actually process the transaction not only to execute the state

transition (and update the hashDB) but also to check the consumed resources by the

transactions and the remaining resources of the batch. After executing a transaction

that fits into a batch, it gets stored on the state. Once transactions are added into the

state, they are immediately available through the rpc

SequenceSender: gets closed batches from the state, tries to aggregate as many of

them as possible, and at some point, decides that it's time to send those batches to L1,

turning the state from trusted to virtualized. In order to send the L1 tx, it uses the

ethtxmanager

EthTxManager: handles requests to send L1 transactions from sequencesender and

aggregator. It takes care of dealing with the nonce of the accounts, increasing the gas

price, and other actions that may be needed to ensure that L1 transactions get mined

Etherman: abstraction that implements the needed methods to interact with the

Ethereum network and the relevant smart contracts

Synchronizer: Updates the state (virtual batches, verified batches, forced batches, ...)

by fetching data from L1 through the etherman. If the node is not a trusted sequencer

it also updates the state with the data fetched from the rpc of the trusted sequencer. It

also detects and handles reorgs that can happen if the trusted sequencer sends

different data in the rpc vs the sequences sent to L1 (trusted reorg aka L2 reorg). Also

handles L1 reorgs (reorgs that happen on the L1 network)

State DB: persistence layer for the state data (except the Merkletree that is handled by

the HashDB service), it stores informationrelated to L1 (blocks, global exit root

12/16

updates, ...) and L2 (batches, L2 blocks, transactions, ...)

Aggregator: consolidates batches by generating ZKPs (Zero Knowledge proofs). To do

so it gathers the necessary data that the prover needs as input through the state and

sends a request to it. Once the proof is generated it sends a request to send an L1 tx to

verify the proof and move the state from virtual to verified to the ethtxmanager. Note

that provers connect to the aggregator and not the other way arround. The aggregator

can handle multiple connected provers at once and make them work concurrently in

the generation of different proofs

b2-zkevm-prover
Accepts requests from the b2-zkevm-node and generates Stark zero-knowledge proofs. the
prover provides critical services through three primary RPC clients: the Aggregator client,
Executor service, and StateDB service.

Aggregator client:The Aggregator client connects to an Aggregator server and

harnesses multiple zkEVM Provers simultaneously, thereby maximizing proof

generation efficiency. This involves a process where the Prover component calculates a

resulting state by processing EVM transaction batches and subsequently generates a

proof based on the PIL polynomials definition and their constraints

Executor service:the Executor service offers a mechanism to validate the integrity of

proposed EVM transaction batches, ensuring they adhere to specific workload

requirements

StateDB service:The StateDB service interfaces with a system's state (represented as a

Merkle tree) and the corresponding database, thus serving as a centralized state

information repository

13/16

4 Findings

GO-1 Using Unsafe Dependencies.

Severity: Informational

Discovery Methods: Dependency Check

Status: Acknowledged

Code Location:

go.mod#11

Descriptions:

The current project is using go-git@v5.10.0 and two vulnerabilities, GO-2024-2456 and GO-

2024-2466, have been discovered. The code that uses this dependency in this project is

located at test/scripts/cmd/dependencies/github.go:56 .

Suggestion:

Update the go-git dependency to the latest version.

https://pkg.go.dev/vuln/GO-2024-2456
https://pkg.go.dev/vuln/GO-2024-2466
https://pkg.go.dev/vuln/GO-2024-2466

14/16

FNE-1 Mismatched Variable Names: Function Parameters vs
Implementation.

Severity: Informational

Discovery Methods: Automated Static Code Analysis

Status: Acknowledged

Code Location:

src/ffiasm/fnec.hpp#143;

src/ffiasm/fnec.cpp#283;

src/ffiasm/fq.hpp#143;

src/ffiasm/fq.cpp#283

Descriptions:

In src/ffiasm/fnec.hpp:143 and src/ffiasm/fq.hpp:143 , the declaration of fromMpz is:

voidvoid fromMpzfromMpz((Element Element &&aa,, constconst mpz_t r mpz_t r));;

However, in src/ffiasm/fenc.cpp:283 and src/ffiasm/fq.cpp:283 , the function

implementation variables are as follows:

voidvoid RawFnecRawFnec::::fromMpzfromMpz((Element Element &&rr,, constconst mpz_t a mpz_t a)) {{

This could potentially confuse developers.

Suggestion:

Ensure Parameter Order Consistency: Make sure that the order of parameters in the

function declaration and implementation matches exactly.

15/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information or assets at risk, and often are not directly exploitable. All major issues

should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information or assets at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

16/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	242_page1.pdf
	242_page2.pdf

