
Audit Report

Mon May 06 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Bitsmiley Smart Contract

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Bitsmiley Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description BitSmiley is a protocol based on the Bitcoin blockchain under
the Fintegra framework. It consists of three main
components: a decentralized overcollateralized stablecoin
protocol, a native trustless lending protocol, and a derivatives
protocol.

Type DeFi

Auditors ScaleBit

Timeline Thu Mar 14 2024 - Thu Mar 14 2024

Languages Solidity

Platform BTC

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/bitSmiley-protocol/evm-contracts

Commits e734b38fbd171b7ad9204baade8d2091bc995380
85004bb8b68be935fe815b3ecf4dded992819d82
6bcd8e1cae553d5bf2af8d4ad76dd48e4b9702f8

1/16

https://github.com/bitSmiley-protocol/evm-contracts
https://github.com/bitSmiley-protocol/evm-contracts/tree/e734b38fbd171b7ad9204baade8d2091bc995380
https://github.com/bitSmiley-protocol/evm-contracts/tree/85004bb8b68be935fe815b3ecf4dded992819d82
https://github.com/bitSmiley-protocol/evm-contracts/tree/6bcd8e1cae553d5bf2af8d4ad76dd48e4b9702f8

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ITO contracts/IToken.sol 5873e78f3b811af948bc37ffd37bb
2463d767f03

BUSD contracts/BitUSD.sol e2ccc92eaf47191b056123df2ea4c
36d2c127164

SERC7EW contracts/StakingERC721EndWithd
raw.sol

093e80b85abdcda96dc10e71bd53
bc86a55cb454

SFE contracts/StabilityFee.sol 96b8859066eaa36acae484573161
72cf9a8f0ac4

BSNF contracts/BitSmileyNoFee.sol 56e658628f798f44b13a2043be917
41e8699d2fe

BUSDL2 contracts/BitUSDL2.sol 250b1c512559988e8f098f1b9e1fb
64c4d2a545a

ORA contracts/Oracle.sol 8603ebe6bbf2eb988f9f8eca1cf47d
fb1b8d97a8

TUT contracts/TransferUtil.sol e0242edf28b1b5752dfeca19696bd
8683f1dc339

SUT contracts/Oracle/SubmimissionUti
l.sol

f27c6a23cf0051eb9796c7aa425ca
b2aaba4886b

STR contracts/Oracle/Structs.sol f05f789b75cf7bb226a062d413b42
2fcb29255ba

OFE contracts/Oracle/OracleFeed.sol 6e99eadf7b69e79a99f851dd95bd
59bc82d86564

2/16

IVM contracts/IVaultManager.sol 85dcd7b99fbeb7b4705743c877d1
cf4faf6e2c48

VOP contracts/TestUtils/VaultOperator.
sol

3911a9a3e11f3c3d2bc1a7ba63ee8
3247bfdbc8e

BUSDL2T contracts/TestUtils/BitUSDL2Test.s
ol

c5aaf1b63ffe24e00a6d89cd386c5
a5e52798e84

WBTC contracts/TestUtils/WBTC.sol 2da424ba1e77e1a75f5cada19b0e
df02ebae31b1

GJO contracts/TestUtils/GemJoin.sol bf0dba57161071a4a7f065473a49c
91c7a819733

NFT contracts/TestUtils/NFT.sol 9dc24c94b6577239b2ce2d661fe81
cbd7140b5d8

VMT contracts/TestUtils/VaultManagerT
est.sol

2fe775ed2ea0eeb3338fa9b044513
71da16d046d

VMA contracts/VaultManager.sol f6c8780e88042170db920a24308a9
9715dacb6fd

IOR contracts/IOracle.sol 4ad9a39ad4e6027bf1e5631b12fda
98608dcc78c

VAU contracts/Vault.sol 3d9390fe113dcbfd97c136b458d93
46d311ab2ef

3/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 0 6

Informational 4 0 4

Minor 0 0 0

Medium 1 0 1

Major 1 0 1

Critical 0 0 0

4/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/16

2 Summary

This report has been commissioned by Bitsmiley to identify any potential issues and
vulnerabilities in the source code of the Bitsmiley smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

BSF-1 Failed to Update Interest
Modification Time

Medium Acknowledged

BSN-1 Unused Constant Informational Acknowledged

BUS-1 Centralization Risk Major Acknowledged

SER-1 Withdraw Function Can Only Be
Called Once

Informational Acknowledged

SER-2 The Unreasonable Reward
Calculation Mechanism

Informational Acknowledged

VMA-1 Insufficient Parameter Validation Informational Acknowledged

7/16

3 Participant Process

Here are the relevant actors with their respective abilities within the Bitsmiley Smart
Contract :
Admin

The Admin can set liquidationFees through setLiquidationFee() .

The Admin can set liquidation beneficiary and set address of the contract StabilityFee

through setAddress() .

The Admin can set caller address that decides which contract it can be interact with

through setCaller() .

The Admin can set fee beneficiary through setFeeBeneficiary() .

The Admin can set fee rate for collateral through setFeeRate() .

The Admin can pause the contract through pause() .

The Admin can unpause the contract through unpause() .

User

The User can open a vault and mint amounts of bitUSD through openVault() .

The User can borrow bitUSD based on his or her vault value through mint() .

The User can repay the debt for owened vault through repay() .

The User can repay all debt for owened vault through repayAll() .

Liquidator

The Liquidator can liquidate any unsafe vault through liquidate() .

8/16

4 Findings

BSF-1 Failed to Update Interest Modification Time

Severity: Medium

Status: Acknowledged

Code Location:

contracts/StabilityFee/BaseStabilityFee.sol#150

Descriptions:

When updating the interest modification time information, the situation where the interest

is 0 is not considered, which may cause the calculation of interest to exceed the actual

borrowing situation. Consider a situation where bob pays off his debt in January and

borrows again one month later. The calculated interest payable at this time is 0 because the

debt scale is 0. This will skip the time update and wait for another month. After Bob pays off

the debt, the interest calculated at this time is the time when the debt was first paid off,

which results in an extra month of interest payment.

Suggestion:

It is recommended to make the time updated correctly.

Resolution:

The client replied that they are aware of this issue and will fix it in the future.

9/16

BSN-1 Unused Constant

Severity: Informational

Status: Acknowledged

Code Location:

contracts/BitSmileyNoFee.sol#16

Descriptions:

There are unused error() in the contract.

Suggestion:

It is recommended to remove unused error() if there's no further design.

10/16

BUS-1 Centralization Risk

Severity: Major

Status: Acknowledged

Code Location:

contracts/BitUSD.sol;

contracts/Oracle.sol

Descriptions:

Centralization risk was identified in the smart contract.

The Admin can mint/burn any amount of tokens to/from any address.

The Admin can set the oracle price.

The Admin can pause/unpause the contract.

Suggestion:

It is recommended to take measures to mitigate this issue.

11/16

SER-1 Withdraw Function Can Only Be Called Once

Severity: Informational

Status: Acknowledged

Code Location:

contracts/StakingERC721EndWithdraw.sol#86

Descriptions:

We found that the withdraw() function can only be called once by an address, which may

cause the user's pledge to be unable to be retrieved.

Suggestion:

It is recommended to make sure this matches your design to prevent any property damage.

12/16

SER-2 The Unreasonable Reward Calculation Mechanism

Severity: Informational

Status: Acknowledged

Code Location:

contracts/StakingERC721EndWithdraw.sol#165

Descriptions:

According to the contract code, we believe that the current reward mechanism may also

need to pay attention to the issuance restrictions of NFT addresses and the value of NFT.

Suggestion:

It is recommended to pay attention to the quantity limit of NFT issuance to prevent

malicious tools from minting a large number of NFT and taking away the rewards. Consider

the value of NFT as one of the factors that determine the number of rewards.

13/16

VMA-1 Insufficient Parameter Validation

Severity: Informational

Status: Acknowledged

Code Location:

contracts/VaultManager.sol#143

Descriptions:

The variable caller was checked, but the parameter _caller was not checked for being 0.

Suggestion:

It is recommended to add a zero address check for the parameter _caller .

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	288_page1.pdf
	288_page2.pdf

