
Audit Report

Wed Feb 07 2024

contact@scalebit.xyz https://twitter.com/scalebit_

Dola Protocol ETH

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/44

Dola Protocol ETH Audit Report

1 Executive Summary

1.1 Project Information

Description A cross-chain liquidity aggregation protocol

Type Crosschain Liquidity

Auditors ScaleBit

Timeline Mon Jan 15 2024 - Wed Feb 07 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/OmniBTC/DolaProtocolDev

Commits b9a31d2ca73a51eb560af8160c3102ff4620ed89
6d7b43cbb5f85c67d3d0ebed56c23f5f6b489dea
c9d577ecbcaa8b126760cb2cb6b1eeac16cd8620
93c2475d5a4cd4dd6255dc7d96ad2533ac9ad7cd

https://github.com/OmniBTC/DolaProtocolDev
https://github.com/OmniBTC/DolaProtocolDev/tree/b9a31d2ca73a51eb560af8160c3102ff4620ed89
https://github.com/OmniBTC/DolaProtocolDev/tree/6d7b43cbb5f85c67d3d0ebed56c23f5f6b489dea
https://github.com/OmniBTC/DolaProtocolDev/tree/c9d577ecbcaa8b126760cb2cb6b1eeac16cd8620
https://github.com/OmniBTC/DolaProtocolDev/tree/93c2475d5a4cd4dd6255dc7d96ad2533ac9ad7cd

2/44

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

IERC2 ethereum/interfaces/IERC20.sol 3628b689e13321c5195555f64fdde
551d9b4ad6e

LBY ethereum/contracts/libraries/LibBy
tes.sol

1f98cb3573244587d42c94e14a047
66aca4743b5

LPC ethereum/contracts/libraries/LibPo
olCodec.sol

c34cecb14940dda08ca2e97bfbcb
b4e9c4abaa9c

LSC ethereum/contracts/libraries/LibSy
stemCodec.sol

10d531672b65413509766bc9cfb3
614b2efa6b85

LDT ethereum/contracts/libraries/LibD
olaTypes.sol

b68630c16e377b7a12fb9c5b346f9
3b95c88c3c6

LGC ethereum/contracts/libraries/LibG
ovCodec.sol

481c203a71e89871fac03d2f807cc
740c268328d

LDE ethereum/contracts/libraries/LibD
ecimals.sol

b5700cb2eb02390ef8087872cb23
4043603338b1

DPO2 ethereum/contracts/omnipool/Dol
aPool.sol

088ab3a969a6a7e1baee549df124
176248fa2a15

LAS ethereum/contracts/libraries/LibAs
set.sol

0dda6dfc927f4c1c793d5cef4740f7
85cfda28a2

IWAP ethereum/interfaces/IWormholeAd
apterPool.sol

b134f42c2967d8c6e5cf25ede11b1
b6a002aac6a

IWO ethereum/interfaces/IWormhole.so
l

0ab0029ee77bdf73c4b7936cb520
484b3282d8e3

3/44

LLC ethereum/contracts/libraries/LibLe
ndingCodec.sol

51d87d82fba9492538e16476eb22f
f5475515681

LWAV ethereum/contracts/libraries/LibW
ormholeAdapterVerify.sol

61cbdc216f6017c2209841874add0
e32d7d2c44f

MUL ethereum/contracts/dolaportal/Mu
lticall.sol

0cf42f8bd511009c6b97525ad0947
63a1ee3e417

SYS2 ethereum/contracts/dolaportal/Sys
tem.sol

73a3d212c1f26b8213960e64cb5f9
e39b7745b40

LEN2 ethereum/contracts/dolaportal/Le
nding.sol

fb9fcd2ab046a596d28c3ea4c7c14
ea0cdf7ce36

WAP2 ethereum/contracts/omnipool/Wo
rmholeAdapterPool.sol

7c2621a21d0db515c84155fdc3587
728ba9ff5f3

4/44

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 23 17 6

Informational 0 0 0

Minor 8 8 0

Medium 3 3 0

Major 12 6 6

Critical 0 0 0

5/44

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

6/44

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/44

2 Summary

This report has been commissioned by Dola Protocol ETH to identify any potential issues
and vulnerabilities in the source code of the Dola Protocol ETH smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 23 issues of varying severity, listed below.

ID Title Severity Status

DPO-1 Spender can Bypass the Warmhole
Checks to Register New Spenders
and then Withdraw Funds from the
Protocol

Major Acknowledged

DPO-2 When the Supply Limit is Reached
on the Sui Chain, Funds Supplied by
Users on the Source Chain may be
Locked for A Period of Time

Major Acknowledged

LAS-1 Revert on Large Approvals &
Transfers

Major Fixed

LAS-2 Not Supported for FEE-ON-
TRANSFER Tokens

Major Acknowledged

LAS-3 isContract Unsafe Medium Fixed

LAS-4 SafeApprove Deprecated Medium Fixed

LDE-1 When Transferring Assets Cross-
Chain From High Precision to Low
Precision, the Loss of Precision Can
Result in Asset Loss for Users

Major Acknowledged

8/44

LEN-1 The Required Fee is not being
Passed When Calling
sendMessage()

Major Fixed

LEN-2 Unchecked Fee Transferred to the
Relayer

Major Acknowledged

LEN-3 The Pause Functionality is
Necessary to Address Emergency
Situations

Major Fixed

LEN-4 Use Calldata Instead of Memory for
Function Arguments That Do not
Get Mutated

Minor Fixed

LEN-5 Using Private rather than Public for
Constants, Saves Gas

Minor Fixed

LWA-1 Using Bools for Storage Incurs
Overhead

Minor Fixed

MUL-1 For Operations That will not
Overflow, You could Use
Unchecked

Minor Fixed

MUL-2 ++i Costs Less Gas Than i++ ,
Especially When It's Used in For-
loops (--i/i-- Too)

Minor Fixed

ORA-1 If price.expo > 0 , Wrong Prices will
be Calculated

Major Fixed

ORA-2 The Oracle Report Lacks Checks for
Price being 0 and Confidence being
0

Medium Fixed

WAP-1 If msg.value is greater than
wormholeFee , it could lead to a

loss of funds

Major Fixed

9/44

WAP-2 No Access Control for
WormholeAdapterPool.sendMessa

ge()

Major Fixed

WAP-3 Financial Losses Caused by The
Account Abstraction Wallet

Major Acknowledged

WAP-4 Missing 0 Address Check Minor Fixed

WAP-5 Lack of Restriction in the
removeRelayer() Function Raises

Concerns about Emptying
Relayers

Minor Fixed

WAP-6 require() / revert() Statements
Should Have Descriptive Reason
Strings

Minor Fixed

10/44

3 Participant Process

Here are the relevant actors with their respective abilities within the Dola Protocol ETH
Smart Contract :
Governance

Governance can call registerSpender to add new spenders to the Dola Pool.

Governance can use deleteSpender to remove spenders from the Dola Pool.

Governance can invoke registerRelayer to register new relayers.

Governance can utilize removeRelayer to deregister existing relayers.

Applications

Applications can use the sendDeposit function to deposit assets into the Dola Pool.

Applications can call sendMessage to send messages through the Wormhole network

that do not involve any incoming or outgoing funds.

Relayer

Only registered relayers can use receiveWithdraw to process withdrawal requests

from the Dola Pool.

User

Users can utilize the aggregate function to execute multiple calls within a single

transaction.

Users can call the blockAndAggregate function executing multiple calls in one

transaction and returns the current block's hash and number for blockchain state

verification.

Users can call the binding function to establish a link between different Dola chains.

Users can use the unbinding function to sever existing links between Dola chains.

Users can utilize the supply function to deposit assets into the contract for cross-

chain operations.

Users can call the withdraw function to retrieve assets from a cross-chain pool.

Users can call the borrow function to take out loans from the cross-chain pool.

Users can use the repay function to settle their previous loans.

Users can call the liquidate function to liquidate bad loans.

11/44

Users can utilize the as_collateral function to use their assets as collateral.

Users can use the cancel_as_collateral function to cancel their assets previously set as

collateral.

Users can call the sponsor function to deposit assets in support of the platform,

distinct from lending or borrowing actions.

Users can use the claim_reward function to claim rewards from specific pools.

12/44

4 Findings

DPO-1 Spender can Bypass the Warmhole Checks to Register
New Spenders and then Withdraw Funds from the Protocol

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/omnipool/DolaPool.sol#40-44;

ethereum/contracts/omnipool/DolaPool.sol#47-63

Descriptions:

The DolaPool.registerSpender() function has an isSpender() modifier, meaning any

spender can add new spenders.

 functionfunction registerSpenderregisterSpender((address newSpenderaddress newSpender)) publicpublic isSpenderisSpender((msgmsg..sendersender)) {{
 requirerequire((spendersspenders[[newSpendernewSpender]] ==== 00,, "HAS REGISTER SPENDER""HAS REGISTER SPENDER"));;
 allSpendersallSpenders..pushpush((newSpendernewSpender));;
 spendersspenders[[newSpendernewSpender]] == allSpenders allSpenders..lengthlength;;
 }}

If the owner adds a new spender, the new spender can directly call registerSpender() to add

another spender, and then call DolaPool.withdraw() to take all the funds from the protocol.

 functionfunction withdrawwithdraw((
 LibDolaTypesLibDolaTypes..DolaAddressDolaAddress memory userAddress memory userAddress,,
 uint64 amountuint64 amount,,
 LibDolaTypesLibDolaTypes..DolaAddressDolaAddress memory poolAddress memory poolAddress
)) publicpublic isSpenderisSpender((msgmsg..sendersender)) {{
 address pool address pool == LibDolaTypesLibDolaTypes..dolaAddressToAddressdolaAddressToAddress((poolAddresspoolAddress));;
 address user address user == LibDolaTypesLibDolaTypes..dolaAddressToAddressdolaAddressToAddress((userAddressuserAddress));;
 uint256 fixedAmount uint256 fixedAmount == LibDecimalsLibDecimals..restoreAmountDecimalsrestoreAmountDecimals((
 amountamount,,
 LibAssetLibAsset..queryDecimalsqueryDecimals((poolpool))
));;
 requirerequire((userAddressuserAddress..dolaChainIddolaChainId ==== dolaChainId dolaChainId,, "INVALID DST CHAIN""INVALID DST CHAIN"));;
 LibAssetLibAsset..transferAssettransferAsset((poolpool,, payablepayable((useruser)),, fixedAmount fixedAmount));;

13/44

 emit emit WithdrawPoolWithdrawPool((poolpool,, user user,, fixedAmount fixedAmount));;
 }}

The same permission issue exists with deleteSpender() .

Suggestion:

It is recommended that only the owner or WormholeAdapterPool can call these functions.

14/44

DPO-2 When the Supply Limit is Reached on the Sui Chain,
Funds Supplied by Users on the Source Chain may be Locked
for A Period of Time

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/omnipool/DolaPool.sol#75

Descriptions:

When users call Lending.supply() to transfer assets from the Ethereum chain to Sui, the

protocol transfers all assets to DolaPool and then sends a cross-chain message.

 functionfunction sendDepositsendDeposit((
 address tokenaddress token,,
 uint256 amountuint256 amount,,
 uint16 appIduint16 appId,,
 bytes memory appPayloadbytes memory appPayload
)) external payable external payable returnsreturns ((uint64uint64)) {{
 uint256 wormholeFee uint256 wormholeFee == wormhole wormhole..messageFeemessageFee(());;
 requirerequire((msgmsg..valuevalue >=>= wormholeFee wormholeFee,, "FEE NOT ENOUGH""FEE NOT ENOUGH"));;
 // Deposit assets to the pool and perform amount checks// Deposit assets to the pool and perform amount checks
 LibAssetLibAsset..depositAssetdepositAsset((tokentoken,, amount amount));;
 ifif ((!!LibAssetLibAsset..isNativeAssetisNativeAsset((tokentoken)))) {{
 LibAssetLibAsset..safeApproveERC20safeApproveERC20((IERC20IERC20((tokentoken)),, addressaddress((dolaPooldolaPool)),, amount amount));;
 }}

 bytes memory payload bytes memory payload == dolaPool dolaPool..depositdeposit{{valuevalue:: msg msg..valuevalue -- wormholeFee wormholeFee}}((
 tokentoken,,
 amountamount,,
 appIdappId,,
 appPayloadappPayload
));;
 returnreturn
 wormholewormhole..publishMessagepublishMessage{{valuevalue:: wormholeFee wormholeFee}}((
 00,,
 payloadpayload,,
 involveFundConsistencyinvolveFundConsistency

15/44

));;
 }}

Subsequently, when executing wormhole_adapter.supply() on the Sui chain, there's a

ceiling. When this ceiling is reached, the protocol prohibits further deposits, causing the

cross-chain message to fail.

 storagestorage::::ensure_user_info_existensure_user_info_exist((storagestorage,, clock clock,, dola_user_id dola_user_id));;
 assertassert!!((storagestorage::::exist_reserveexist_reserve((storagestorage,, dola_pool_id dola_pool_id)),, EINVALID_POOL_IDEINVALID_POOL_ID));;
 assertassert!!((not_reach_supply_ceilingnot_reach_supply_ceiling((storagestorage,, dola_pool_id dola_pool_id,, supply_amount supply_amount)),,
EREACH_SUPPLY_CEILINGEREACH_SUPPLY_CEILING));;
 boostboost::::boost_poolboost_pool((storagestorage,, dola_pool_id dola_pool_id,, dola_user_id dola_user_id,,
lending_codeclending_codec::::get_supply_typeget_supply_type(()),, clock clock));;

Users' assets remain locked on the Ethereum chain until they can be supplied on the target

chain. If users happen to notice an investment opportunity on the target chain during this

time but are unable to transfer their assets, they miss out on this investment opportunity.

Suggestion:

It is recommended to prevent users from supplying on the source chain when the supply

limit is reached on the target chain.

Resolution:

Perform front-end validation for the supply ceiling and promptly raise the limit through

governance.

16/44

LAS-1 Revert on Large Approvals & Transfers

Severity: Major

Status: Fixed

Code Location:

ethereum/contracts/libraries/LibAsset.sol#58

Descriptions:

In the maxApproveERC20() function, if allowance < amount , the protocol will perform an

approve operation for spender with the value set to MAX_INT .

 functionfunction maxApproveERC20maxApproveERC20((
 IERC20IERC20 assetId assetId,,
 address spenderaddress spender,,
 uint256 amountuint256 amount
)) internal internal {{
 ifif ((addressaddress((assetIdassetId)) ==== NATIVE_ASSETIDNATIVE_ASSETID)) returnreturn;;
 ifif ((spender spender ==== NULL_ADDRESSNULL_ADDRESS)) revertrevert(("NullAddrIsNotAValidSpender""NullAddrIsNotAValidSpender"));;
 uint256 allowance uint256 allowance == assetId assetId..allowanceallowance((addressaddress((thisthis)),, spender spender));;
 ifif ((allowance allowance << amount amount))
 SafeERC20SafeERC20..safeApprovesafeApprove((IERC20IERC20((assetIdassetId)),, spender spender,, MAX_INTMAX_INT));;
 }}

However, some tokens (e.g., UNI, COMP) revert if the value passed to approve or transfer is

larger than uint96.

Suggestion:

It is recommended to approve a specified amount of tokens as needed.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984#code
https://etherscan.io/token/0xc00e94cb662c3520282e6f5717214004a7f26888#code

17/44

LAS-2 Not Supported for FEE-ON-TRANSFER Tokens

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/libraries/LibAsset.sol#111

Descriptions:

In the depositAsset() function, if the token is not the native token, the protocol records the

protocol's balance _fromTokenBalance before transferring from the user. Then, it calls

LibAsset.transferFromERC20() to execute the transfer from the user. Finally, it calculates the

protocol's balance LibAsset.getOwnBalance() , and the protocol's balance subtracted by

_fromTokenBalance should equal amount .

 uint256 _fromTokenBalance uint256 _fromTokenBalance == LibAssetLibAsset..getOwnBalancegetOwnBalance((tokenIdtokenId));;
 LibAssetLibAsset..transferFromERC20transferFromERC20((
 tokenIdtokenId,,
 msgmsg..sendersender,,
 addressaddress((thisthis)),,
 amountamount
));;
 ifif ((LibAssetLibAsset..getOwnBalancegetOwnBalance((tokenIdtokenId)) -- _fromTokenBalance _fromTokenBalance !=!= amount amount))
 revertrevert(("InvalidAmount""InvalidAmount"));;
 }}

However, some tokens take a transfer fee(e.g. STA,PAXG) may result in receiving fewer

tokens than expected. In this case, the verification will fail.

 ifif ((LibAssetLibAsset..getOwnBalancegetOwnBalance((tokenIdtokenId)) -- _fromTokenBalance _fromTokenBalance !=!= amount amount))
 revertrevert(("InvalidAmount""InvalidAmount"));;

Suggestion:

It is recommended to consider the use cases of tokens that charge a transfer fee.

18/44

LAS-3 isContract Unsafe

Severity: Medium

Status: Fixed

Code Location:

ethereum/contracts/libraries/LibAsset.sol#147-155

Descriptions:

This function utilizes extcodesize to obtain the length of the bytecode (runtime) stored at

an address. If the length is greater than zero, it is identified as a contract; otherwise, it is

considered an Externally Owned Account (EOA). However, there is a problem with this

approach. During the creation of a contract, the runtime bytecode is not yet stored at the

address, resulting in a bytecode length of zero. This means that if we place our logic within

the contract's constructor, it is possible to circumvent the isContract() check.

 functionfunction isContractisContract((address contractAddraddress contractAddr)) internal view internal view returnsreturns ((boolbool)) {{
 uint256 sizeuint256 size;;
 // solhint-disable-next-line no-inline-assembly// solhint-disable-next-line no-inline-assembly
 assembly assembly {{
 sizesize ::== extcodesizeextcodesize((contractAddrcontractAddr))
 }}
 returnreturn size size >> 00;;
 }}

Suggestion:

It is recommended to use tx.origin == msg.sender to check if the caller is a contract.

Resolution:

This issue has been fixed. The client has already implemented the check tx.origin ==

msg.sender to determine if the caller is a contract.

19/44

LAS-4 SafeApprove Deprecated

Severity: Medium

Status: Fixed

Code Location:

ethereum/contracts/libraries/LibAsset.sol#58

Descriptions:

The OpenZeppelin SafeERC20 safeApprove() function has been deprecated, as seen in the

comments of the OpenZeppelin code. Using this deprecated function can lead to unintended

reverts and potentially the locking of funds.

Suggestion:

It is recommended to replace safeApprove() with safeIncreaseAllowance() .

Resolution:

This issue has been fixed. The client has already replaced SafeApprove with

safeIncreaseAllowance .

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/828fe365eeff13e7aa188e449005ad81f7222189/contracts/token/ERC20/utils/SafeERC20.sol#L39-L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/828fe365eeff13e7aa188e449005ad81f7222189/contracts/token/ERC20/utils/SafeERC20.sol#L39-L44

20/44

LDE-1 When Transferring Assets Cross-Chain From High
Precision to Low Precision, the Loss of Precision Can Result in
Asset Loss for Users

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/libraries/LibDecimals.sol#13

Descriptions:

In the DolaPool.deposit() function, the protocol converts the precision of the user's cross-

chain assets to 8 digits. The conversion method is as follows: if the precision of the user's

asset on the ETH chain is greater than 8 digits, fixedAmount = uint64(amount / (10**

(decimals - 8))) .

functionfunction fixAmountDecimalsfixAmountDecimals((uint256 amountuint256 amount,, uint8 decimals uint8 decimals))
 internalinternal
 purepure
 returnsreturns ((uint64uint64))
 {{
 uint64 fixedAmountuint64 fixedAmount;;
 ifif ((decimals decimals >> 88)) {{
 fixedAmount fixedAmount == uint64uint64((amount amount // ((1010****((decimals decimals -- 88))))));;
 }} elseelse ifif ((decimals decimals << 88)) {{
 fixedAmount fixedAmount == uint64uint64((amount amount ** ((1010****((88 -- decimals decimals))))));;
 }} elseelse {{
 fixedAmount fixedAmount == uint64uint64((amountamount));;
 }}
 requirerequire((fixedAmount fixedAmount >> 00,, "Fixed amount too low""Fixed amount too low"));;
 returnreturn fixedAmount fixedAmount;;
 }}

Note that this is rounded down. For example, if a user wants to transfer

3999999999999999999 WETH from the ETH chain to the Aptos chain, fixedAmount =

399999999 , where the precision of WETH on the Aptos chain is 8 digits. If the user then

transfers these WETH from the Aptos chain back to the ETH chain, the final converted result

will be 399999999000000000, resulting in a loss of 999999999 wei. While the loss may seem

21/44

small for a single transaction, it can accumulate significantly with multiple users and

transactions.

Suggestion:

It is recommended to charge a certain fee when crossing from the source chain to the target

chain and round up if division doesn't result in a whole number fixedAmount =

uint64(amount / (10**(decimals - 8))) + 1 .

Resolution:

Take measures from the frontend to limit.

22/44

LEN-1 The Required Fee is not being Passed When Calling
sendMessage()

Severity: Major

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Lending.sol#127

Descriptions:

In the Lending.withdraw() function, the protocol calls

WormholeAdapterPool.sendMessage() to send a message to the Wormhole . However,

msg.value is not passed when calling sendMessage() .

 uint64 sequence uint64 sequence == IWormholeAdapterPoolIWormholeAdapterPool((wormholeAdapterPoolwormholeAdapterPool))..sendMessagesendMessage((
 LENDING_APP_IDLENDING_APP_ID,,
 appPayloadappPayload
));;

Inside the WormholeAdapterPool.sendMessage() function, it is required that msg.value >=

wormholeFee , which causes the withdraw() call to fail.

 functionfunction sendMessagesendMessage((uint16 appIduint16 appId,, bytes memory appPayload bytes memory appPayload))
 externalexternal
 payablepayable
 returnsreturns ((uint64uint64))
 {{
 uint256 wormholeFee uint256 wormholeFee == wormhole wormhole..messageFeemessageFee(());;
 requirerequire((msgmsg..valuevalue >=>= wormholeFee wormholeFee,, "FEE NOT ENOUGH""FEE NOT ENOUGH"));;
 bytes memory payload bytes memory payload == dolaPool dolaPool..sendMessagesendMessage((appIdappId,, appPayload appPayload));;
 returnreturn
 wormholewormhole..publishMessagepublishMessage{{valuevalue:: msg msg..valuevalue}}((
 00,,
 payloadpayload,,
 notInvolveFundConsistencynotInvolveFundConsistency
));;
 }}

23/44

Similarly, borrow() , repay() , liquidate() , as_collateral() , cancel_as_collateral() , and

claim_reward() do not pass the fee.

Suggestion:

It is recommended to pass wormholeFee when calling sendMessage() .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

24/44

LEN-2 Unchecked Fee Transferred to the Relayer

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/dolaportal/Lending.sol#55

Descriptions:

Several functions in the Lending contract, such as supply() , withdraw() , and borrow() ,

specify a fee parameter, which is ultimately transferred to the relayer.

 functionfunction supplysupply((
 address tokenaddress token,,
 uint256 amountuint256 amount,,
 uint256 feeuint256 fee
)) external payable external payable {{
 uint64 nonce uint64 nonce == IWormholeAdapterPoolIWormholeAdapterPool((wormholeAdapterPoolwormholeAdapterPool))..getNoncegetNonce(());;
 uint64 fixAmount uint64 fixAmount == LibDecimalsLibDecimals..fixAmountDecimalsfixAmountDecimals((
 amountamount,,
 LibAssetLibAsset..queryDecimalsqueryDecimals((tokentoken))
));;
............
............
 LibAssetLibAsset..transferAssettransferAsset((addressaddress((00)),, payablepayable((relayerrelayer)),, fee fee));;

However, there is no validation for the fee parameter, allowing it to be set to 0 and thus

avoiding fees.

Suggestion:

It is recommended to validate the fee.

Resolution:

The relay fee is complex and cannot be dynamically evaluated. Consider introducing the

option for users to supplement the relay fee during later operations.

25/44

LEN-3 The Pause Functionality is Necessary to Address
Emergency Situations

Severity: Major

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Lending.sol#62-87

Descriptions:

If a token depegs, causing tokens to move erratically across various chains, as seen in

previous incidents like LUA and USDC、USDT events, or if there's a security issue with the

Wormhole preventing it from functioning properly, the protocol needs to enact a pause to

prevent users from executing corresponding operations.

Suggestion:

It is recommended to implement a whenNotPaused modifier and apply it to the respective

functions.

Resolution:

This issue has been fixed, and the protocol has implemented a pause functionality.

26/44

LEN-4 Use Calldata Instead of Memory for Function Arguments
That Do not Get Mutated

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Lending.sol#110

Descriptions:

Mark data types as calldata instead of memory where possible. This makes it so that the

data is not automatically loaded into memory. If the data passed into the function does not

need to be changed (like updating values in an array), it can be passed in as calldata . The

one exception to this is if the argument must later be passed into another function that

takes an argument that specifies memory storage.

bytes memory tokenbytes memory token,,
bytes memory receiverbytes memory receiver,,

bytes memory tokenbytes memory token,,

bytes memory receiverbytes memory receiver,,

Suggestion:

It is recommended to use calldata instead of memory .

Resolution:

This issue has been fixed. The client has already used calldata instead of memory .

27/44

LEN-5 Using Private rather than Public for Constants, Saves
Gas

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Lending.sol#13

Descriptions:

If needed, the values can be read from the verified contract source code, or if there are

multiple values there can be a single getter function that returns a tuple of the values of all

currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler not

having to create non-payable getter functions for deployment calldata, not having to store

the bytes of the value outside of where it's used, and not adding another entry to the

method ID table.

uint8 uint8 publicpublic constant constant LENDING_APP_IDLENDING_APP_ID == 11;;

Suggestion:

It is recommended to use private rather than public for constants.

Resolution:

This issue has been fixed. The client has already used private rather than public for

constants.

28/44

LWA-1 Using Bools for Storage Incurs Overhead

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/libraries/LibWormholeAdapterVerify.sol#39

Descriptions:

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to

avoid Gsset (20000 gas) when changing from false to true , after having been true in the

past. See source.

 mappingmapping((bytes32bytes32 =>=> bool bool)) storage consumedVaas storage consumedVaas,,

mappingmapping((bytes32bytes32 =>=> bool bool)) storage consumedVaas storage consumedVaas,,

Suggestion:

It is recommended to use uint256(1) and uint256(2) for true/false.

Resolution:

This issue has been fixed. The client has already used uint256(1) and uint256(2) for

true/false.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27

29/44

MUL-1 For Operations That will not Overflow, You could Use
Unchecked

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Multicall.sol#23

Descriptions:

For Operations that will not overflow, you could use unchecked.

forfor ((uint256 i uint256 i == 00;; i i << calls calls..lengthlength;; i i++++)) {{

Suggestion:

It is recommended to use Solidity's unchecked block to save the overflow checks.

Resolution:

This issue has been fixed. The client has already used Solidity's unchecked block to save the

overflow checks.

30/44

MUL-2 ++i Costs Less Gas Than i++ , Especially When It's Used
in For-loops (--i/i-- Too)

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/dolaportal/Multicall.sol#23

Descriptions:

The gas cost of ++i is lower than i++ , particularly when utilized in for-loops (--i/i-- as well).

forfor ((uint256 i uint256 i == 00;; i i << calls calls..lengthlength;; i i++++)) {{

Suggestion:

It is recommended to use ++i instead of i++ .

Resolution:

This issue has been fixed. The client has already used ++i instead of i++ .

31/44

ORA-1 If price.expo > 0 , Wrong Prices will be Calculated

Severity: Major

Status: Fixed

Code Location:

sui/dola_protocol/sources/oracle/oracle.move#354-363

Descriptions:

When a user calls Lending.supply() on the ETH chain to send a cross-chain message, upon

execution of logic.execute_supply() on Sui, the protocol updates the average liquidity of the

user.

 update_interest_rateupdate_interest_rate((pool_manager_infopool_manager_info,, storage storage,, dola_pool_id dola_pool_id,, 00));;
 update_average_liquidityupdate_average_liquidity((storagestorage,, oracle oracle,, clock clock,, dola_user_id dola_user_id));;

In the update_average_liquidity() function, the protocol calculates the value of the user's

collateral by multiplying the quantity of collateral by the price. The calculation method is as

follows.

 publicpublic fun fun calculate_valuecalculate_value((oracleoracle:: &&mut mut PriceOraclePriceOracle,, dola_pool_iddola_pool_id:: u16 u16,, amountamount:: u256 u256))::
u256 u256 {{
 letlet ((priceprice,, decimal decimal,, _ _)) == oracle oracle::::get_token_priceget_token_price((oracleoracle,, dola_pool_id dola_pool_id));;
 amount amount ** price price // ((suisui::::mathmath::::powpow((1010,, decimal decimal)) asas u256 u256))
 }}

In the oracle, the price update is performed.

 fun fun update_priceupdate_price((priceprice:: &&mut mut PricePrice,, pyth_pricepyth_price:: &&priceprice::::PricePrice,, current_timestampcurrent_timestamp:: u64 u64))
{{
 letlet price_value price_value == pyth pyth::::priceprice::::get_priceget_price((pyth_pricepyth_price));;
 letlet price_value price_value == i64 i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&price_valueprice_value));;
 letlet expo expo == pyth pyth::::priceprice::::get_expoget_expo((pyth_pricepyth_price));;
 letlet expo expo == i64 i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&expoexpo));;

 priceprice..valuevalue == ((price_value price_value asas u256 u256));;
 priceprice..decimaldecimal == ((expo expo asas u8 u8));;

32/44

 priceprice..last_update_timestamplast_update_timestamp == current_timestamp current_timestamp;;
 }}

There are two issues here:

1. expo may be positive. In such cases, executing let expo =

i64::get_magnitude_if_negative(&expo) will fail.

2.If expo is positive, then the calculation of the user's collateral value should be amount *

price * 10^expo .

https://docs.pyth.network/price-feeds/solana-price-feeds/best-practices

https://github.com/pyth-network/pyth-sdk-rs/blob/main/examples/sol-anchor-

contract/programs/sol-anchor-contract/src/lib.rs#L53-L56

Suggestion:

It is recommended to calculate the price as price * 10^expo if expo is greater than 0.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://docs.pyth.network/price-feeds/solana-price-feeds/best-practices
https://github.com/pyth-network/pyth-sdk-rs/blob/main/examples/sol-anchor-contract/programs/sol-anchor-contract/src/lib.rs#L53-L56
https://github.com/pyth-network/pyth-sdk-rs/blob/main/examples/sol-anchor-contract/programs/sol-anchor-contract/src/lib.rs#L53-L56

33/44

ORA-2 The Oracle Report Lacks Checks for Price being 0 and
Confidence being 0

Severity: Medium

Status: Fixed

Code Location:

sui/dola_protocol/sources/oracle/oracle.move#354-363

Descriptions:

When executing cross-chain requests from the ETH chain to SUI, such as withdraw, borrow,

and liquidate, the protocol utilizes Pyth Oracle quotes for collateral evaluation. However, the

protocol fails to consider the scenario where the price from the oracle is 0 when updating

the oracle price, leading to unexpected outcomes. For example, this quote may sometimes

have a price of 0. https://pyth.network/price-feeds/equity-us-aapl-usd

 fun fun update_priceupdate_price((priceprice:: &&mut mut PricePrice,, pyth_pricepyth_price:: &&priceprice::::PricePrice,, current_timestampcurrent_timestamp:: u64 u64))
{{
 letlet price_value price_value == pyth pyth::::priceprice::::get_priceget_price((pyth_pricepyth_price));;
 letlet price_value price_value == i64 i64::::get_magnitude_if_positiveget_magnitude_if_positive((&&price_valueprice_value));;
 letlet expo expo == pyth pyth::::priceprice::::get_expoget_expo((pyth_pricepyth_price));;
 letlet expo expo == i64 i64::::get_magnitude_if_negativeget_magnitude_if_negative((&&expoexpo));;

 priceprice..valuevalue == ((price_value price_value asas u256 u256));;
 priceprice..decimaldecimal == ((expo expo asas u8 u8));;
 priceprice..last_update_timestamplast_update_timestamp == current_timestamp current_timestamp;;
 }}

Suggestion:

It is recommended to revert when the price is 0 or the Confidence is 0.

Resolution:

This issue has been fixed. The protocol has added price validation.

https://pyth.network/price-feeds/equity-us-aapl-usd

34/44

WAP-1 If msg.value is greater than wormholeFee , it could
lead to a loss of funds

Severity: Major

Status: Fixed

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#205-219

Descriptions:

The logic for the msg.value check is not adequately reasoned, particularly in scenarios

where users are depositing ERC20 tokens. The condition msg.value >= wormholeFee is not

entirely appropriate in this context, as it may lead users to transfer more NativeAsset than

the required wormholeFee . This issue is also present in the sendMessage function. For a

better understanding of how this should be handled, reference can be made to the

Wormhole project's example code, specifically located at HelloWorld.sol line 61.

 functionfunction sendMessagesendMessage((uint16 appIduint16 appId,, bytes memory appPayload bytes memory appPayload))
 externalexternal
 payablepayable
 returnsreturns ((uint64uint64))
 {{
 uint256 wormholeFee uint256 wormholeFee == wormhole wormhole..messageFeemessageFee(());;
 requirerequire((msgmsg..valuevalue >=>= wormholeFee wormholeFee,, "FEE NOT ENOUGH""FEE NOT ENOUGH"));;
 bytes memory payload bytes memory payload == dolaPool dolaPool..sendMessagesendMessage((appIdappId,, appPayload appPayload));;
 returnreturn
 wormholewormhole..publishMessagepublishMessage{{valuevalue:: msg msg..valuevalue}}((
 00,,
 payloadpayload,,
 notInvolveFundConsistencynotInvolveFundConsistency
));;
 }}

Additional, the protocol fee is passed as msg.value in the sendMessage function, and it

should be wormholeFee.

Suggestion:

https://github.com/wormhole-foundation/wormhole-scaffolding/blob/87f3dce3f610aed5912248ee33b0a3e684285f50/evm/src/01_hello_world/HelloWorld.sol#L61
https://github.com/wormhole-foundation/wormhole-scaffolding/blob/main/evm/src/01_hello_world/HelloWorld.sol#L74

35/44

It is recommended to use the condition msg.value == wormholeFee in the smart contract

code, especially when handling the depositing of ERC20 tokens and in the sendMessage

function. Additional, replace msg.value with wormholeFee .

Resolution:

This issue has been fixed. The client has already fixed it according to the recommended

method.

36/44

WAP-2 No Access Control for
WormholeAdapterPool.sendMessage()

Severity: Major

Status: Fixed

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#205

Descriptions:

WormholeAdapterPool.sendMessage() lacks any permission control, allowing anyone to call

this function with malicious payloads. As this is a cross-chain protocol, there may be future

integrations where protocols integrate the Dola Pool protocol, allowing users to interact

with third-party protocols integrated with Dola Pool. When a user calls a function of a third-

party protocol, the protocol can construct a WithdrawPayload within the function, set the

receiver to its own address, and then call sendMessage() to send a cross-chain message. In

the sendMessage() function, the protocol will use tx.origin as the sender. When executed

on the Sui chain, the protocol on Sui will transfer funds from the sender address to the

receiver. Similarly, it can borrow assets under a different identity.

 functionfunction sendMessagesendMessage((uint16 appIduint16 appId,, bytes memory appPayload bytes memory appPayload))
 externalexternal
 payablepayable
 returnsreturns ((uint64uint64))
 {{
 uint256 wormholeFee uint256 wormholeFee == wormhole wormhole..messageFeemessageFee(());;
 requirerequire((msgmsg..valuevalue >=>= wormholeFee wormholeFee,, "FEE NOT ENOUGH""FEE NOT ENOUGH"));;
 bytes memory payload bytes memory payload == dolaPool dolaPool..sendMessagesendMessage((appIdappId,, appPayload appPayload));;
 returnreturn
 wormholewormhole..publishMessagepublishMessage{{valuevalue:: msg msg..valuevalue}}((
 00,,
 payloadpayload,,
 notInvolveFundConsistencynotInvolveFundConsistency
));;
 }}

Suggestion:

37/44

It is recommended to implement access control.

Resolution:

This issue has been fixed. The protocol restricts only portals from making the call.

38/44

WAP-3 Financial Losses Caused by The Account Abstraction
Wallet

Severity: Major

Status: Acknowledged

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#180-225

Descriptions:

In the context of a supply function, users deposit a certain amount of tokens and then

send a cross-chain message. This message includes tx.origin , which is used by contracts on

the Sui to record the initiator of the transaction. In other words, tx.origin records the

address that deposited the funds. However, when users employ an account abstraction

wallet, the caller is the user's AA Wallet, meaning the msg.sender address is the user's AA

Wallet address (like SimpleAccount). But tx.origin is the address of the bundler in the

account abstraction, which is the true initiator of the transaction.

When multiple users use the same account abstraction wallet, they may have different

SimpleAccounts , but they share a common bundler. This means that the funds deposited

by different users are recorded under the address of the bundler. This is problematic

because it implies that the funds deposited by different users are indistinguishably linked to

the bundler address. As a result, after the user deposits, the assets cannot be obtained on

the target chain.

Suggestion:

It is recommended to use the msg.sender address to record the user's address during

both deposit and withdrawal, instead of tx.origin .

39/44

WAP-4 Missing 0 Address Check

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#46-71

Descriptions:

The constructor fails to implement zero address checks for parameters such as wormhole

and dolaChainId . For specifics, refer to the example code in the Wormhole GitHub

repository: HelloWorld.sol lines 25-27.

 constructorconstructor((
 IWormholeIWormhole _wormhole _wormhole,,
 uint16 _dolaChainIduint16 _dolaChainId,,
 DolaPoolDolaPool _dolaPool _dolaPool,,
 uint8 _notInvolveFundConsistencyuint8 _notInvolveFundConsistency,,
 uint8 _involveFundConsistencyuint8 _involveFundConsistency,,
 uint16 _emitterChainIduint16 _emitterChainId,,
 bytes32 _emitterAddressbytes32 _emitterAddress,,
 address _initialRelayeraddress _initialRelayer
)) {{
 wormhole wormhole == _wormhole _wormhole;;
 dolaChainId dolaChainId == _dolaChainId _dolaChainId;;
 ifif ((addressaddress((_dolaPool_dolaPool)) ==== addressaddress((0x00x0)))) {{
 // First deploy pool// First deploy pool
 dolaPool dolaPool == newnew DolaPoolDolaPool((_dolaChainId_dolaChainId,, addressaddress((thisthis))));;
 }} elseelse {{
 // Upgrade// Upgrade
 dolaPool dolaPool == _dolaPool _dolaPool;;
 }}

 notInvolveFundConsistency notInvolveFundConsistency == _notInvolveFundConsistency _notInvolveFundConsistency;;
 involveFundConsistency involveFundConsistency == _involveFundConsistency _involveFundConsistency;;
 registeredEmittersregisteredEmitters[[_emitterChainId_emitterChainId]] == _emitterAddress _emitterAddress;;
 registeredRelayersregisteredRelayers[[_initialRelayer_initialRelayer]] == truetrue;;
 relayersrelayers..pushpush((_initialRelayer_initialRelayer));;
 }}

https://github.com/wormhole-foundation/wormhole-scaffolding/blob/87f3dce3f610aed5912248ee33b0a3e684285f50/evm/src/01_hello_world/HelloWorld.sol#L25-L27

40/44

Suggestion:

It is recommended to add zero address checks for parameters such as wormhole and

dolaChainId .

Resolution:

This issue has been fixed. The client has already added a zero address check.

41/44

WAP-5 Lack of Restriction in the removeRelayer() Function
Raises Concerns about Emptying Relayers

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#144

Descriptions:

The removeRelayer() function lacks a constraint requiring the retention of at least one

relayer . This implies that relayers can be cleared entirely. About the deleteSpender()

function in the DolaPool contract, which restricts not clearing spenders , it raises the

question of whether relayers should also ensure the preservation of at least one relayer .

Suggestion:

It is recommended to add validation in the removeRelayer() function to ensure that at least

one relayer must be retained after deletion.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

42/44

WAP-6 require() / revert() Statements Should Have
Descriptive Reason Strings

Severity: Minor

Status: Fixed

Code Location:

ethereum/contracts/omnipool/WormholeAdapterPool.sol#138

Descriptions:

In Solidity, it's essential to include descriptive reason strings within require() or revert()

statements.

requirerequire((payloadpayload..opcodeopcode ==== LibGovCodecLibGovCodec..ADD_RELAYER_OPCODEADD_RELAYER_OPCODE));;

Suggestion:

It is recommended to add reason strings to require() or revert() .

Resolution:

This issue has been fixed. The client has already added reason strings to require() or

revert() .

43/44

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

44/44

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	245_page1.pdf
	245_page2.pdf

