
Audit Report

Wed Jan 10 2024

contact@scalebit.xyz https://twitter.com/scalebit_

Ethora

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/47

Ethora Audit Report

1 Executive Summary

1.1 Project Information

Description Ethora is a decentralized binary options trading protocol.

Type Options

Auditors ScaleBit

Timeline Fri Dec 08 2023 - Wed Jan 10 2024

Languages Solidity

Platform Base

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/LibraTechSolution/BO_SMC

Commits 6aed4c697485167207ed640012eff96e9faaf6f6
5da9e46e919f71335ec167502ba03ef28060e872

https://github.com/LibraTechSolution/BO_SMC
https://github.com/LibraTechSolution/BO_SMC/tree/6aed4c697485167207ed640012eff96e9faaf6f6
https://github.com/LibraTechSolution/BO_SMC/tree/5da9e46e919f71335ec167502ba03ef28060e872

2/47

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ABD contracts/library/ABDKMath64x64.
sol

77d7148dc649bad541f2378117df1
11e8d215d19

VAL contracts/library/Validator.sol 20b067901608ea618d553db89ee1
2e3ae03eff4c

OMA contracts/library/OptionMath.sol 3a72284be37173595e8bf5269894
0bb31f516880

ARE contracts/AccountRegistrar.sol 1c2efc39bbfac7e3b299f04a4c5760
987253f3c7

RDI contracts/earn/RewardDistributor.
sol

ef5f6f8547ac492ef8543751c24bdd
d6f47dfdf4

BTO contracts/earn/BaseToken.sol 08c5940f64b0bc6290845175de385
3906462fea0

MBT contracts/earn/MintableBaseToke
n.sol

8aafb682e68452b6a879ce4709129
0503190096b

EETR contracts/earn/EsETR.sol 0badcf0a8fe3e4edb1f58994c6bfb7
0c45786fb2

RTR contracts/earn/RewardTracker.sol acfb36d0e8c868dda43bd71ad0f11
907a0a0d158

BDI contracts/earn/BonusDistributor.s
ol

2433ee35e0ce7e4c8315c299bb79
6805d0e67d91

GOV contracts/earn/Governable.sol 3297820b00dc42400aab430f5df62
ebe37a4469f

3/47

RRO contracts/earn/RewardRouter.sol 4846e33d87fc8fe8d581a5ea0129b
b63594a37d6

VES contracts/earn/Vester.sol 1003fb87044ff05b7cfc154d8c93ec
891f75ccba

RST contracts/ReferralStorage.sol 83e2a2c1acd4f0c7b2bf88a3bf34d
0d8471b357e

SFD contracts/SettlementFeeDistributo
r.sol

94c739971277df7cc53119c430730
a0e4676d661

EBP contracts/EthoraBinaryPool.sol 7de8b1d2e4d7b9e077b82fb127d8
87bb83af94be

CWI contracts/CreationWindow.sol e76f27d7b0e4f3ec24212b5cee03d
4bdf8fc2a9c

EBO contracts/EthoraBinaryOptions.sol 4237ed96090f0c9f86e93c66b70b0
ceb63c3a102

FAU contracts/Faucet.sol ed0cfaa63b29d0da665d9a7630ab
863f6f8866a9

OST contracts/OptionStorage.sol 17ba77462a62aa1bfeba0894d194
a08c3ab54bb6

IYT contracts/interfaces/IYieldTracker.s
ol

fa89235d6d8e604f6c4e419ace045
023bb165ed2

IRT contracts/interfaces/IRewardTrack
er.sol

9caca4394303813c944db9b53de4
59faa6357ca4

IMI contracts/interfaces/IMintable.sol c9679f79b06dcdd29bac30f13b938
84dd4150387

IEM contracts/interfaces/IElpManager.s
ol

77885b336fa92e2b365f8dc78968d
ab0d9f56f16

4/47

IVE contracts/interfaces/IVester.sol a471971a9f7bfbc1a196487788148
a94f800ce13

IRD contracts/interfaces/IRewardDistri
butor.sol

0b51ac724136a38e0b57ff77dee92
056aea9c3b9

IBT contracts/interfaces/IBaseToken.so
l

1d45b7cd98f691732c307e17843bc
3394172c3b2

ITS contracts/interfaces/ITokenSale.sol ed1451f85d786a7f1e1d33f98856d
0f27f08047b

INT contracts/interfaces/interfaces.sol a55501b7b191ef28140be123bbe7
3d53a3c8336c

ERO contracts/EthoraRouter.sol 14193f85ee3c2d4465d6703739749
599845d5c79

POIS contracts/PoolOIStorage.sol ffc86a0e221aa041bffeff7bffcd4f22
84a72dc0

USDC contracts/USDC.sol c6071e6dcebf18e93f8c269e2c192
5d494a273da

MOIC contracts/MarketOIConfig.sol ca8ecd19dc4e7f33fd6c1938a03afc
78575f3980

POIC contracts/PoolOIConfig.sol 33cf52cc8dd1d32b48534e5ce7367
8434d32974d

TSA contracts/tokenSale/TokenSale.sol 0d4bd3a13f48210c7f8a5af68a8d4
3a3084c5095

WLI contracts/tokenSale/WhiteList.sol 6b6f332f4873835b71b9feab50c62
b75ecf637cc

BOO contracts/Booster.sol 7a59082641794d1f81761a5dec704
119b574cdfc

5/47

TOK contracts/Token.sol fe405b1393a1a0f72d7c71cd15c47
94153f878ba

OCO contracts/OptionsConfig.sol 2844d8ff02442bd0b2e4838fe5b49
55fceff885c

6/47

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 28 25 3

Informational 3 3 0

Minor 17 16 1

Medium 3 2 1

Major 5 4 1

Critical 0 0 0

7/47

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

8/47

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

9/47

2 Summary

This report has been commissioned by Ethora to identify any potential issues and
vulnerabilities in the source code of the Ethora smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 28 issues of varying severity, listed below.

ID Title Severity Status

ABD-1 Splitting require() Statements that
Use && Saves Gas

Minor Fixed

ARE-1 Centralization Risk for Trusted
Owners

Major Acknowledged

ARE-2 For Operations That will not
Overflow, You could Use
Unchecked

Minor Fixed

ARE-3 Using Private rather than Public for
Constants, Saves Gas

Minor Fixed

ARE-4 Use Calldata Instead of Memory for
Function Arguments That Do not
Get Mutated

Informational Fixed

BDI-1 State Variables Should Be Cached
in Stack Variables Rather Than Re-
reading Them from Storage

Minor Fixed

BTO-1 approve() and transferFrom()
Functions are Subject to Front-run
attack

Medium Acknowledged

10/47

BTO-2 When the Current Allowance is Set
to type(uint256).max , There is No
Need to Update the Allowance

Medium Fixed

EBO-1 Use Custom Errors Minor Fixed

EBO-2 ++i Costs Less Gas Than i++ ,
Especially When It's Used in For-
loops (--i/i-- Too)

Minor Acknowledged

EBO-3 Use Shift Right/Left instead of
Division/Multiplication if Possible

Minor Fixed

EBO-4 Use != 0 instead of > 0 for
Unsigned Integer Comparison

Minor Fixed

EBO-5 Functions Not Used Internally
Could be Marked External

Minor Fixed

EBP-1 Use _grantRole() instead of
_setupRole()

Major Fixed

EBP-2 User Boost will not be Updated Major Fixed

EBP-3 Unused Variables Minor Fixed

EBP-4 Unused Import of
SafeMathUpgradeable

Minor Fixed

EBP-5 Using Bools for Storage Incurs
Overhead

Minor Fixed

EBP-6 Functions Guaranteed To Revert
When Called By Normal Users Can
be Marked Payable

Minor Fixed

EBP-7 require() / revert() Statements
Should Have Descriptive Reason
Strings

Minor Fixed

11/47

EBP-8 Long Revert Strings Informational Fixed

ERO-1 Blacklisted User can Block the
openTrades()

Major Fixed

ERO-2 Cache Array Length Outside of
Loop

Minor Fixed

ERO-3 Don't Initialize Variables with
Default Value

Informational Fixed

FAU-1 Single-step Ownership Transfer
Can be Dangerous

Major Fixed

OST-1 The Purpose of the save() Function Medium Fixed

POI-1 Event is Missing Indexed Fields Minor Fixed

TSA-1 abi.encodePacked() Should Not be
Used with Dynamic Types When
Passing the Result to a Hash
Function Such as keccak256()

Minor Fixed

12/47

3 Participant Process

Here are the relevant actors with their respective abilities within the Ethora Smart Contract:
Admin

Admin can set contract registry through setContractRegistry() .

Admin can set publisher addresses through setPublisher() .

Admin can update admin address through setAdmin() .

Admin can manage keepers through setKeeper() .

Admin manages handlers through setHandler() .

Admin sets the tokenX address through setTokenX() .

Admin adjusts the lockup period through setLockupPeriod() .

Admin modifies the maximum liquidity through setMaxLiquidity() .

Admin registers an account through registerAccount() .

Admin deregisters an account through deregisterAccount() .

Admin configures the contract with parameters such as tokens, pools, and categories

through ownerConfig() .

Admin sets the IV configuration parameters for ITM and OTM options through

setIvConfig() .

Admin or authorized users can pause/unpause option creation through

setIsPaused() .

Admin approves specific addresses through approveAddress() .

Admin sets token pairs through setToken() .

User

User can approve transactions via signature through approveViaSignature() .

User can revoke previously granted approvals through revokeApprovals() .

Users contribute liquidity through provide() .

Users withdraw liquidity through withdraw() .

13/47

User can stake their own ETR tokens through stakeEtr() .

User can stake their ES ETR tokens through stakeEsEtr() .

User can unstake their ETR tokens through unstakeEtr() .

User can unstake their ES ETR tokens through unstakeEsEtr() .

User can mint and stake ELP tokens through mintAndStakeElp() .

User can unstake and redeem ELP tokens through unstakeAndRedeemElp() .

User can claim accumulated rewards through claim() .

User can claim ES ETR rewards through claimEsEtr() .

User can claim fee rewards through claimFees() .

User can compound rewards through compound() .

User can handle various reward-related actions through handleRewards() .

User can signal the transfer of stakes from one address to another through

signalTransfer() .

User can accept the signaled transfer of stakes between addresses through

acceptTransfer() .

Keeper

Keeper can open trades through openTrades() .

Keeper can attempt early closure of pending trades through closeAnytime() .

Keeper can execute specific options through executeOptions() .

Option issuers

Option issuers lock funds in an option through lock() .

Option issuers unlock funds from an option through unlock() .

Option issuers distribute funds to liquidity providers after options expiration through

send() .

Owner

Owner can set the pool contract address through setPool() .

14/47

Owner can set the address for the creation window contract through

setCreationWindowContract() .

Owner adjusts the minimum fee required for options creation through setMinFee() .

Owner modifies the implied volatility (IV) through setIV() .

Owner updates the platform fee through setPlatformFee() .

Owner sets the address for the settlement fee disbursal contract through

setSettlementFeeDisbursalContract() .

Owner can configure the maximum period allowed for options through

setMaxPeriod() .

Owner can configure the minimum period allowed for options through

setMinPeriod() .

Owner sets the contract address for pool open interest storage through

setPoolOIStorageContract() .

Owner sets the contract address for pool open interest configuration through

setPoolOIConfigContract() .

Owner sets the contract address for market open interest configuration through

setMarketOIConfigContract() .

Owner adjusts the early close threshold through setEarlyCloseThreshold() .

Owner toggles the allowance for early close functionality through toggleEarlyClose() .

Owner adds a single address to the whitelist through addAddressToWhitelist() .

Owner adds multiple addresses to the whitelist through addAddressesToWhitelist() .

Owner removes a single address from the whitelist through

removeAddressFromWhitelist() .

Owner removes multiple addresses from the whitelist through

removeAddressesFromWhitelist() .

Gov

Gov can withdraw tokens mistakenly sent to the contract through withdrawToken() .

Gov can batch stake ETR tokens for multiple accounts through

batchStakeEtrForAccount() .

15/47

Gov can stake ETR tokens for a specific account through stakeEtrForAccount() .

Gov can batch compound rewards for multiple accounts through

batchCompoundForAccounts() .

Gov can compound rewards for a specific account through compoundForAccount() .

16/47

4 Findings

ABD-1 Splitting require() Statements that Use && Saves Gas

Severity: Minor

Status: Fixed

Code Location:

contracts/library/ABDKMath64x64.sol#33,89

Descriptions:

Splitting require() statements using && individually consume more gas in Solidity. Solidity

combines all conditions into a single require() statement, and gas calculation occurs during

the evaluation of the merged condition. Splitting conditions into separate require()

statements leads to individual gas calculations for each statement rather than a

consolidated evaluation, resulting in additional gas consumption. Consolidating these

conditions within a single require() statement is more efficient and reduces gas usage.

Suggestion:

It is recommended to consolidate multiple conditions within a single require() statement

using && to optimize gas efficiency in Solidity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/47

ARE-1 Centralization Risk for Trusted Owners

Severity: Major

Status: Acknowledged

Code Location:

contracts/AccountRegistrar.sol#12,24,40

Descriptions:

Contracts have owners with privileged rights to perform admin tasks and need to be trusted

to not perform malicious updates or drain funds.

contractcontract AccountRegistrarAccountRegistrar isis IAccountRegistrar IAccountRegistrar,, AccessControl AccessControl

 externalexternal override override onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE)) {{

 externalexternal onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE)) {{

Suggestion:

It is recommended to use multi-signature or additional permission controls can mitigate this

risk.

18/47

ARE-2 For Operations That will not Overflow, You could Use
Unchecked

Severity: Minor

Status: Fixed

Code Location:

contracts/AccountRegistrar.sol#50,53

Descriptions:

For Operations that will not overflow, you could use unchecked.

noncenonce:: nonce nonce ++ 11,,

emitemit DeregisterAccountDeregisterAccount((useruser,, nonce nonce ++ 11));;

Suggestion:

It is recommended to use Solidity's unchecked block to save the overflow checks.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/47

ARE-3 Using Private rather than Public for Constants, Saves
Gas

Severity: Minor

Status: Fixed

Code Location:

contracts/AccountRegistrar.sol#14

Descriptions:

If needed, the values can be read from the verified contract source code, or if there are

multiple values there can be a single getter function that returns a tuple of the values of all

currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler not

having to create non-payable getter functions for deployment calldata, not having to store

the bytes of the value outside of where it's used, and not adding another entry to the

method ID table.

bytes32bytes32 publicpublic constantconstant ADMIN_ROLE ADMIN_ROLE == keccak256keccak256(("ADMIN_ROLE""ADMIN_ROLE"));;

Suggestion:

It is recommended to use private rather than public for constants.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/47

ARE-4 Use Calldata Instead of Memory for Function Arguments
That Do not Get Mutated

Severity: Informational

Status: Fixed

Code Location:

contracts/AccountRegistrar.sol#23,39

Descriptions:

Mark data types as calldata instead of memory where possible. This makes it so that the

data is not automatically loaded into memory. If the data passed into the function does not

need to be changed (like updating values in an array), it can be passed in as calldata . The

one exception to this is if the argument must later be passed into another function that

takes an argument that specifies memory storage.

Suggestion:

It is recommended to use calldata instead of memory .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/47

BDI-1 State Variables Should Be Cached in Stack Variables
Rather Than Re-reading Them from Storage

Severity: Minor

Status: Fixed

Code Location:

contracts/earn/BonusDistributor.sol#121

Descriptions:

In Solidity, state variables ought to be cached in stack variables rather than repeatedly

reading them from storage.

IERC20IERC20((rewardTokenrewardToken))..safeTransfersafeTransfer((msgmsg..sendersender,, amount amount));;

Suggestion:

It is recommended to cache state variables in local variables within functions to reduce

repetitive reads from storage in Solidity.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/47

BTO-1 approve() and transferFrom() Functions are Subject to
Front-run attack

Severity: Medium

Status: Acknowledged

Code Location:

contracts/earn/BaseToken.sol#168;

contracts/earn/BaseToken.sol#176

Descriptions:

The BaseToken.approve() method overwrites the current allowance regardless of whether

the spender already used it or not. It allows the spender to front-run and spend the amount

before the new allowance is set.

Scenario:

Alice allows Bob to transfer N of Alice's tokens (N>0) by calling

the pool.approve method, passing the Bob's address and N as the method arguments

After some time, Alice decides to change from N to M (M>0) the number of Alice's

tokens Bob is allowed to transfer, so she calls the pool.approve method again, this time

passing the Bob's address and M as the method arguments

Bob notices the Alice's second transaction before it was mined and quickly sends

another transaction that calls the pool.transferFrom method to transfer N Alice's

tokens somewhere

If the Bob's transaction will be executed before the Alice's transaction, then Bob will

successfully transfer N Alice's tokens and will gain an ability to transfer another M

tokens Before Alice noticed that something went wrong, Bob calls

the pool.transferFrom method again, this time to transfer M Alice's tokens.

So, an Alice's attempt to change the Bob's allowance from N to M (N>0 and M>0) made

it possible for Bob to transfer N+M of Alice's tokens, while Alice never wanted to allow

so many of her tokens to be transferred by Bob.

Suggestion:

It is recommended to use increaseAllowance and decreaseAllowance instead of approve as

OpenZeppelin ERC20 implementation. Please see the details here:

23/47

https://forum.openzeppelin.com/t/explain-the-practical-use-of-increaseallowance-and-

decreaseallowance-functions-on-erc20/15103/4

https://forum.openzeppelin.com/t/explain-the-practical-use-of-increaseallowance-and-decreaseallowance-functions-on-erc20/15103/4
https://forum.openzeppelin.com/t/explain-the-practical-use-of-increaseallowance-and-decreaseallowance-functions-on-erc20/15103/4

24/47

BTO-2 When the Current Allowance is Set to
type(uint256).max , There is No Need to Update the Allowance

Severity: Medium

Status: Fixed

Code Location:

contracts/earn/BaseToken.sol#176-192

Descriptions:

In the BaseToken.transferFrom() function, it checks if the _amount is within the allowed

limit based on the current allowance.If the check passes, it subtracts the transferred amount

from the allowance.It then updates the allowance with the new value.Finally, it transfers the

specified amount from the sender to the recipient.

 uint256 nextAllowance uint256 nextAllowance == allowances allowances[[_sender_sender]][[msgmsg..sendersender]]..subsub((
 _amount_amount,,
 "BaseToken: transfer amount exceeds allowance""BaseToken: transfer amount exceeds allowance"
));;
 _approve_approve((_sender_sender,, msg msg..sendersender,, nextAllowance nextAllowance));;
 _transfer_transfer((_sender_sender,, _recipient _recipient,, _amount _amount));;
 returnreturn truetrue;;

However, adhering to OpenZeppelin's best practices, if the current allowance is set to the

maximum value (type(uint256).max), there is no necessity to update the allowance. An

allowance set to the maximum value effectively indicates an unlimited allowance, rendering

any further updates redundant.

Suggestion:

It is recommended to refer to OpenZeppelin's best practices.

Resolution:

This issue has been fixed. The client followed OpenZeppelin's best practices.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol#L307-L313

25/47

EBO-1 Use Custom Errors

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryOptions.sol#187,189

Descriptions:

Instead of using error strings, to reduce deployment and runtime costs, you should use

Custom Errors. This would save both deployment and runtime costs.Source

requirerequire((optionID optionID << nextTokenId nextTokenId,, "O10""O10"));;

requirerequire((optionoption..state state ==== State State..ActiveActive,, "O5""O5"));;

Suggestion:

It is recommended to use Custom Errors.

requirerequire((optionID optionID << nextTokenId nextTokenId,, "Invalid OptionID""Invalid OptionID"));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://soliditylang.org/blog/2021/04/21/custom-errors/

26/47

EBO-2 ++i Costs Less Gas Than i++ , Especially When It's Used
in For-loops (--i/i-- Too)

Severity: Minor

Status: Acknowledged

Code Location:

contracts/EthoraBinaryOptions.sol#324

Descriptions:

The gas cost of ++i is lower than i++ , particularly when utilized in for-loops (--i/i-- as well).

Suggestion:

It is recommended to use ++i instead of i++ .

27/47

EBO-3 Use Shift Right/Left instead of Division/Multiplication if
Possible

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryOptions.sol#135

Descriptions:

A division/multiplication by any number x being a power of 2 can be calculated by shifting

log2(x) to the right/left.

While the DIV opcode uses 5 gas, the SHR opcode only uses 3 gas. Furthermore, Solidity's

division operation also includes a division-by-0 prevention which is bypassed using shifting.

optionParamsoptionParams..amount amount // 22,,

Suggestion:

It is recommended to use shift Right/Left instead of division/multiplication.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

28/47

EBO-4 Use != 0 instead of > 0 for Unsigned Integer
Comparison

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryOptions.sol#299,423

Descriptions:

When dealing with unsigned integer types, comparisons with != 0 are cheaper than with >

0 .

requirerequire((maxTradeSize maxTradeSize >> 00,, "O36""O36"));;

ifif ((referrerFee referrerFee >> 00))

Suggestion:

It is recommended to use != 0 instead of > 0 for unsigned integer comparison.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

29/47

EBO-5 Functions Not Used Internally Could be Marked
External

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryOptions.sol#100,107,224,269,485,491

Descriptions:

In Solidity, functions that are not internally used within the contract can be more suitably

marked as external. This ensures clarity in code and signifies that these functions are

intended to be accessed from outside the contract by other contracts or external entities.

functionfunction approvePoolToTransferTokenXapprovePoolToTransferTokenX(()) publicpublic {{

functionfunction setIsPausedsetIsPaused(()) publicpublic {{

functionfunction feesfees((

functionfunction getMaxOIgetMaxOI(()) publicpublic viewview returnsreturns ((uint256uint256)) {{

functionfunction approveAddressapproveAddress((

functionfunction setTokensetToken((

Suggestion:

It is recommended to consider marking functions that are not internally used within the

contract as external to enhance code readability and explicitly indicate that these functions

are meant to be accessed externally. This practice provides clarity and aligns with the

intended usage of the functions, making the contract interface more understandable for

external interactions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

30/47

EBP-1 Use _grantRole() instead of _setupRole()

Severity: Major

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#47

Descriptions:

Access Control's _setupRole() has been deprecated in favor of _grantRole() , which

performs the same operations.

https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-

bytes32-address-

However, it is still utilized in the EthoraBinaryPool.initialize() function.

 functionfunction initializeinitialize((
 address _tokenXaddress _tokenX,,
 uint32 _lockupPerioduint32 _lockupPeriod
)) external initializer external initializer {{
 __ERC20_init__ERC20_init(("Ethora LP Token""Ethora LP Token",, "ELP""ELP"));;
 ACCURACYACCURACY == 1e31e3;;
 INITIAL_RATEINITIAL_RATE == 11;;
 OPTION_ISSUER_ROLEOPTION_ISSUER_ROLE == keccak256keccak256(("OPTION_ISSUER_ROLE""OPTION_ISSUER_ROLE"));;
 tokenX tokenX == ERC20UpgradeableERC20Upgradeable((_tokenX_tokenX));;
 owner owner == msg msg..sendersender;;
 maxLiquidity maxLiquidity == 50000005000000 ** 1010 **** tokenX tokenX..decimalsdecimals(());;
 lockupPeriod lockupPeriod == _lockupPeriod _lockupPeriod;;
 _setupRole_setupRole((DEFAULT_ADMIN_ROLEDEFAULT_ADMIN_ROLE,, msg msg..sendersender));;
 }}

Suggestion:

It is recommend to use _grantRole() instead of _setupRole() .

Resolution:

This issue has been fixed. The client used _grantRole() instead of _setupRole() .

https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-bytes32-address-
https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-bytes32-address-

31/47

EBP-2 User Boost will not be Updated

Severity: Major

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#165-169

Descriptions:

The function getBoostPercentage() is used to retrieve the boost percentage for a specific

user and token. In the function,it checks whether the total number of boost trades

(totalBoostTrades) for the user is greater than the total boost trades already used

(totalBoostTradesUsed). If this condition is met, the function returns the boost percentage

(boostPercentage). Otherwise, it returns 0.

 functionfunction getBoostPercentagegetBoostPercentage((
 address useraddress user,,
 address tokenaddress token
)) external view override external view override returnsreturns ((uint256uint256)) {{
 UserBoostTradesUserBoostTrades memory userBoostTrade memory userBoostTrade == userBoostTrades userBoostTrades[[tokentoken]][[useruser]];;
 ifif ((
 userBoostTradeuserBoostTrade..totalBoostTradestotalBoostTrades >>
 userBoostTradeuserBoostTrade..totalBoostTradesUsedtotalBoostTradesUsed
)) {{
 returnreturn boostPercentage boostPercentage;;
 }} elseelse returnreturn 00;;
 }}

However, in the protocol, userBoostTrade.totalBoostTrades is initialized to 0 by default, and

there are no other places where it is updated. Therefore, this function will always return 0.

Consequently, the booster.updateUserBoost() function will not be called in the

createFromRouter() function for updates.

 IBoosterIBooster booster booster == IBoosterIBooster((configconfig..boosterContractboosterContract(())));;
 ifif ((
 boosterbooster..getBoostPercentagegetBoostPercentage((optionParamsoptionParams..useruser,, addressaddress((tokenXtokenX)))) >> 00
)) {{

32/47

 boosterbooster..updateUserBoostupdateUserBoost((optionParamsoptionParams..useruser,, addressaddress((tokenXtokenX))));;
 }}

Suggestion:

It is recommended to implement updates for userBoostTrade.totalBoostTrades in the

corresponding functions based on business logic.

Resolution:

This issue has been fixed. The client deleted the relevant code.

33/47

EBP-3 Unused Variables

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#22;

contracts/ReferralStorage.sol#16;

contracts/ReferralStorage.sol#22

Descriptions:

The variable in question serves no purpose as it is not utilized anywhere in the contract,

leading to code redundancy and additional gas expenditure.

 uint16 uint16 publicpublic ACCURACYACCURACY;;

 mappingmapping((uint8uint8 =>=> TierTier)) publicpublic tiers tiers;;
 mappingmapping((addressaddress =>=> ReferralDataReferralData)) publicpublic UserReferralDataUserReferralData;;

Suggestion:

It is recommended to remove the variables or utilize them in the code.

Resolution:

This issue has been fixed. The client deleted the unnecessary variables.

34/47

EBP-4 Unused Import of SafeMathUpgradeable

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#8

Descriptions:

In this smart contract, the SafeMathUpgradeable library is imported, but none of its

functions are actually used, potentially leading to code redundancy and unnecessary gas

cost.

importimport "@openzeppelin/contracts-upgradeable/utils/math/SafeMathUpgradeable.sol""@openzeppelin/contracts-upgradeable/utils/math/SafeMathUpgradeable.sol";;

Suggestion:

It is recommended to either remove unnecessary imports or utilize the functionalities of the

imported libraries.

Resolution:

This issue has been fixed. The client deleted the unnecessary imports.

35/47

EBP-5 Using Bools for Storage Incurs Overhead

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#29

Descriptions:

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to

avoid Gsset (20000 gas) when changing from false to true , after having been true in the

past. See source.

mappingmapping((addressaddress =>=> boolbool)) publicpublic isHandler isHandler;;

Suggestion:

It is recommended to use uint256(1) and uint256(2) for true/false.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27

36/47

EBP-6 Functions Guaranteed To Revert When Called By Normal
Users Can be Marked Payable

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#60,192

Descriptions:

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries

to pay the function. Marking the function as payable will lower the gas cost for legitimate

callers because the compiler will not include checks for whether a payment was provided.

The extra opcodes avoided are

CALLVALUE(2),DUP1(3),ISZERO(3),PUSH2(3),JUMPI(10),PUSH1(3),DUP1(3),REVERT(0),JUMPDEST(1),PO

which costs an average of about 21 gas per call to the function, in addition to the extra

deployment cost.

Suggestion:

It is recommended that functions guaranteed to revert when called by normal users can be

marked payable.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

37/47

EBP-7 require() / revert() Statements Should Have
Descriptive Reason Strings

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#211,429

Descriptions:

In Solidity, it's essential to include descriptive reason strings within require() or revert()

statements.

requirerequire((to to !=!= addressaddress((00))));;
requirerequire((b b >> 00));;

Suggestion:

It is recommended to add reason strings to require() or revert() .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

38/47

EBP-8 Long Revert Strings

Severity: Informational

Status: Fixed

Code Location:

contracts/EthoraBinaryPool.sol#210,343

Descriptions:

The error message string provided in the require function is too long and exceeds the EVM

limit.

requirerequire((llll..lockedlocked,, "Pool: lockedAmount is already unlocked""Pool: lockedAmount is already unlocked"));;

Suggestion:

It is recommended to shorten the error message.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

39/47

ERO-1 Blacklisted User can Block the openTrades()

Severity: Major

Status: Fixed

Code Location:

contracts/EthoraRouter.sol#554-555

Descriptions:

In the open trade process, the protocol transfers token from users. However, certain tokens,

like USDC, have blacklists that prevent users from sending or receiving tokens. If a user is

blacklisted, the protocol's attempt to call transferFrom() and withdraw funds from the user

will fail, disrupting the protocol's operation and compromising its atomicity

 ERC20UpgradeableERC20Upgradeable tokenX tokenX == ERC20UpgradeableERC20Upgradeable((optionsContractoptionsContract..tokenXtokenX(())));;

 tokenXtokenX..safeTransferFromsafeTransferFrom((useruser,, admin admin,, config config..platformFeeplatformFee(())));;
 tokenXtokenX..safeTransferFromsafeTransferFrom((useruser,, params params..targetContracttargetContract,, revisedFee revisedFee));;

Suggestion:

It is recommended to add a try-catch block during token transfers.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://etherscan.io/token/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48#writeProxyContract

40/47

ERO-2 Cache Array Length Outside of Loop

Severity: Minor

Status: Fixed

Code Location:

contracts/EthoraRouter.sol#122,161,232

Descriptions:

If not cached, the solidity compiler will always read the length of the array during each

iteration. That is, if it is a storage array, this is an extra sload operation (100 additional extra

gas for each iteration except for the first) and if it is a memory array, this is an extra mload

operation (3 additional gas for each iteration except for the first).

forfor ((uint256uint256 index index == 00;; index index << revokeParams revokeParams..lengthlength;; index index++++)) {{

forfor ((uint32uint32 index index == 00;; index index << params params..lengthlength;; index index++++)) {{

forfor ((uint32uint32 index index == 00;; index index << closeParams closeParams..lengthlength;; index index++++)) {{

Suggestion:

It is recommended to cache the array length before entering the loop.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

41/47

ERO-3 Don't Initialize Variables with Default Value

Severity: Informational

Status: Fixed

Code Location:

contracts/EthoraRouter.sol#122,161

Descriptions:

Uninitialized variables are assigned with the types' default value. Explicitly initializing a

variable with its default value costs unnecessary gas.

forfor ((uint256uint256 index index == 00;; index index << revokeParams revokeParams..lengthlength;; index index++++)) {{

forfor ((uint32uint32 index index == 00;; index index << params params..lengthlength;; index index++++)) {{

Suggestion:

It is recommended not to use default values to initialize variables.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

42/47

FAU-1 Single-step Ownership Transfer Can be Dangerous

Severity: Major

Status: Fixed

Code Location:

contracts/Faucet.sol#8;

contracts/EthoraRouter.sol#17;

contracts/earn/Governable.sol#5

Descriptions:

Faucet inherits from the Ownable contract. This contract does not implement a 2-Step-

Process for transferring ownership. So ownership of the contract can easily be lost when

making a mistake when transferring ownership.

contract contract FaucetFaucet is is OwnableOwnable {{
 USDCUSDC publicpublic token token;;
 uint256 uint256 publicpublic amount amount;;
 uint256 uint256 publicpublic startTimestamp startTimestamp;;
 uint256 uint256 publicpublic fee fee == 1e151e15;; // 0.001 ETH// 0.001 ETH
 address address publicpublic fee_collector fee_collector;;
 mappingmapping((addressaddress =>=> uint256 uint256)) publicpublic lastSavedTimestamp lastSavedTimestamp;;
 mappingmapping((bytes32bytes32 =>=> bool bool)) publicpublic previousHashedMessages previousHashedMessages;;

Additionally, the modifications of the admin in EthoraRouter.sol and the gov in

Governable.sol encounter the same issue.

Suggestion:

It is recommended to use the Ownable2Step contract from OZ

(https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/access/Ownable2Step.sol) instead.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

43/47

OST-1 The Purpose of the save() Function

Severity: Medium

Status: Fixed

Code Location:

contracts/OptionStorage.sol#13-19

Descriptions:

The OptionStorage.save() function only emits an event, please confirm if there are any

other purposes for its usage.

 functionfunction savesave((
 uint256uint256 optionId optionId,,
 addressaddress optionsContractAddress optionsContractAddress,,
 addressaddress user user
)) externalexternal {{
 emitemit SaveSave((optionIdoptionId,, optionsContractAddress optionsContractAddress,, user user));;
 }}

Suggestion:

It is recommended to remove the OptionStorage contract and emit the event directly.

Resolution:

This issue has been fixed. The client followed our advice.

44/47

POI-1 Event is Missing Indexed Fields

Severity: Minor

Status: Fixed

Code Location:

contracts/PoolOIStorage.sol#10

Descriptions:

Index event fields make the field more quickly accessible to off-chain tools that parse events.

However, note that each index field costs extra gas during emission, so it's not necessarily

best to index the maximum allowed per event (three fields). Each event should use three

indexed fields if there are three or more fields and gas usage is not particularly of concern

for the events in question. If there are fewer than three fields, all of the fields should be

indexed.

Suggestion:

It is recommended to evaluate the necessity of indexing fields based on the specific needs of

off-chain tools and gas usage. For events with three or more fields where gas consumption

isn't critical, consider indexing up to three relevant fields. For events with fewer than three

fields, index all available fields to optimize off-chain tool accessibility. Regularly assess and

adjust indexing strategies based on the requirements of off-chain tools and gas efficiency.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

45/47

TSA-1 abi.encodePacked() Should Not be Used with Dynamic
Types When Passing the Result to a Hash Function Such as
keccak256()

Severity: Minor

Status: Fixed

Code Location:

contracts/tokenSale/TokenSale.sol#821

Descriptions:

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash collisions

(e.g. abi.encodePacked(0x123,0x456) => 0x123456 => abi.encodePacked(0x1,0x23456) ,

but abi.encode(0x123,0x456) => 0x0...1230...456). "Unless there is a compelling reason,

abi.encode should be preferred". If there is only one argument to abi.encodePacked() it

can often be cast to bytes() or bytes32() instead. If all arguments are strings and or bytes,

bytes.concat() should be used instead.

Suggestion:

It is recommended to modify it according to the description.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

46/47

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

47/47

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	203_page1.pdf
	203_page2.pdf

