
Audit Report

Mon Jan 22 2024

contact@scalebit.xyz https://twitter.com/scalebit_

Merlin Chain

https://twitter.com/scalebit_
https://www.scalebit.xyz/


1/14

Merlin Chain Audit Report

1 Executive Summary

1.1 Project Information

Description Bitcoin Layer 2 with compatibility of EVM. The audit scope is
the smart contract differences between Ploygan and Merlin.

Type L2

Auditors ScaleBit

Timeline Thu Jan 18 2024 - Mon Jan 22 2024

Languages Solidity

Platform Others

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/MerlinLayer2/cdk-validium-contracts

Commits e803166f59cdb6fd99bb27abfd4d2b4d2477ea9d
cecd53e0b1e39cd9df1a79215eedbbb636b4e0a7

https://github.com/MerlinLayer2/cdk-validium-contracts
https://github.com/MerlinLayer2/cdk-validium-contracts/tree/e803166f59cdb6fd99bb27abfd4d2b4d2477ea9d
https://github.com/MerlinLayer2/cdk-validium-contracts/tree/cecd53e0b1e39cd9df1a79215eedbbb636b4e0a7


2/14

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

CDKVD contracts/deployment/CDKValidiu
mDeployer.sol

00918fde8e5d37b17e85bcc194fa8
d3b0bc775f6

PZEVMGE
R

contracts/PolygonZkEVMGlobalExit
Root.sol

e3e792dfb642f625e0542c6cedfd2
2ecdd28fe5a

FVE contracts/verifiers/FflonkVerifier.so
l

fd85a1774d2d97d59ca5de587f5c0
f89bf25ef53

CDKVT contracts/CDKValidiumTimelock.sol 206210bdda9ad847fc7d4d3ba32a
bd37b0944ecb

CDKV contracts/CDKValidium.sol b4b1f824af76234156d6b031295c3
a44bc2a7e1b

TWR contracts/lib/TokenWrapped.sol 39aca0b51e7ce3c35f169a7ebc101
2c0559ba31b

DCO contracts/lib/DepositContract.sol fa95ec31f9921eac4b1726504ba95f
193c2d12d6

EMA contracts/lib/EmergencyManager.s
ol

e5535f95b992de4b8d974bee0b1d
194718d33be5

GERL contracts/lib/GlobalExitRootLib.sol cbe88865963252964569aeb61e78
342265624d38

PZEVMGE
RL2

contracts/PolygonZkEVMGlobalExit
RootL2.sol

907a4a0b6c6e7436f23e9eb1450d
64e6843e6055

CDKDC contracts/CDKDataCommittee.sol 758b107820daafb6cfa5f677f3bbff
9054e0235d



3/14

PZEVMB contracts/PolygonZkEVMBridge.sol d2814831a6306c9a2084d5d3f768
aa0f2e9c1348



4/14

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 4 0 0

Informational 3 0 0

Minor 1 0 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0



5/14

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues



6/14

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.



7/14

2 Summary

This report has been commissioned by Merlin Chain to identify any potential issues and
vulnerabilities in the source code of the Merlin Chain smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 4 issues of varying severity, listed below.

ID Title Severity Status

PZE-1 Lack of Events Emit Minor Pending

PZE-2 Unused Params Informational Pending

PZE-3 Unnecessary Check Informational Pending

PZE-4 Inaccurate Error Code Informational Pending



8/14

3 Participant Process

Here are the relevant actors with their respective abilities within the Merlin Chain Smart
Contract:
Admin

The admin can settle the feeAddress  by calling the setBridgeSettingsFee()  function.

The admin can set the EmergencyState  through the

activateEmergencyState/deactivateEmergencyState()  function.

User

Users can invoke the bridgeAsset  function to deposit add a new leaf to the merkle

tree.

Users can utilize the bridgeMessage  function to send bridge message and send ETH

value

Users have the option to call the claimAsset  function to Verify merkle proof and

withdraw tokens/ether.

Users can use the claimMessage  function to Verify merkle proof and execute

message.



9/14

4 Findings

PZE-1 Lack of Events Emit

Severity: Minor

Status: Pending

Code Location:

contracts/PolygonZkEVMBridge.sol#682

Descriptions:

The smart contract lacks appropriate events for monitoring sensitive operations, which

could make it difficult to track sensitive actions or detect potential issues.

Suggestion:

It is recommended to emit events for those sensitive functions.



10/14

PZE-2 Unused Params

Severity: Informational

Status: Pending

Code Location:

contracts/PolygonZkEVMBridge.sol#181

Descriptions:

Due to changes in the bridgeAsset  function, the parameter permitData  is not used, it is

recommended to remove the unused parameter in the function. The constants

_PERMIT_SIGNATURE  and _PERMIT_SIGNATURE_DAI  are also redundant.

Suggestion:

It is recommended to remove the unused parameter in the function if there is no further

design.



11/14

PZE-3 Unnecessary Check

Severity: Informational

Status: Pending

Code Location:

contracts/PolygonZkEVMBridge.sol#290

Descriptions:

In the bridgeAsset  function, the feeAddress  will never be set to 0 address, so the if

condition feeAddress ! = address(0)  is redundant.

Suggestion:

It is suggested to remove unnecessary if  check statements.



12/14

PZE-4 Inaccurate Error Code

Severity: Informational

Status: Pending

Code Location:

contracts/PolygonZkEVMBridge.sol#19

Descriptions:

Code in lines 197 and 205 correspond to different situations, the

AmountDoesNotMatchMsgValue  error code aborts when the amount does not match

msg.value , but code in 205 compares the value of bridgeFee  with msg.value , so it

recommended to use other error codes to abort.

Suggestion:

It is recommended to use other error codes to abort, such as

AmountDoesNotMatchBridgeFee .



13/14

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.



14/14

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.


	228_page1.pdf
	228_page2.pdf

