
Audit Report

Fri Apr 19 2024

contact@bitslab.xyz https://twitter.com/scalebit_

MerlinStarter Staking

https://twitter.com/scalebit_
https://www.scalebit.xyz/

MerlinStarter Staking Audit Report

1 Executive Summary

1.1 Project Information

Description The 1st native launchpad on MerlinLayer2

Type Staking

Auditors ScaleBit

Timeline Tue Mar 26 2024 - Fri Apr 19 2024

Languages Solidity

Platform BTC

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Merlinstarter/MerlinstarterStaking

Commits 817e4ce213ca68affa55375ee7e05aa0807fa60d
b8c40a624ac9dbb1f04611dca5e450e203c3eb0d

1/17

https://github.com/Merlinstarter/MerlinstarterStaking
https://github.com/Merlinstarter/MerlinstarterStaking/tree/817e4ce213ca68affa55375ee7e05aa0807fa60d
https://github.com/Merlinstarter/MerlinstarterStaking/tree/b8c40a624ac9dbb1f04611dca5e450e203c3eb0d

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MSS MerlinStarterStaking.sol 665f10d1a34e9d12ae6512252ea8
94bb549ea714

2/17

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 8 7 1

Informational 0 0 0

Minor 5 4 1

Medium 1 1 0

Major 2 2 0

Critical 0 0 0

3/17

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/17

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/17

2 Summary

This report has been commissioned by MerlinStarter Staking to identify any potential issues
and vulnerabilities in the source code of the MerlinStarter Staking smart contract, as well as
any contract dependencies that were not part of an officially recognized library. In this audit,
we have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

MSS-1 Centralization Risk Major Fixed

MSS-2 Incompatible With Deflationary
Token

Major Fixed

MSS-3 May not be able to Withdraw Funds Medium Fixed

VME-1 Lack of Events Emit Minor Acknowledged

VME-2 Lack of Zero Check in mint Minor Fixed

VME-3 Code Optimization Minor Fixed

VME-4 Unnecessary Assignments Minor Fixed

VME-5 Inaccurate Error Messages Minor Fixed

6/17

3 Participant Process

Here are the relevant actors with their respective abilities within the MerlinStarter Staking
Smart Contract :
Admin

Admin can change the parameters using the setParameters function.

Admin can add white list account using the addWhiteAccount function.

Admin can remove white list account using the removeWhiteAccount function.

Admin can withdraw the token deposit in the contract to mFundAddress using the

withdrawToken function.

User

Users can stake tokens using the stake function.

Users can unstake tokens and get rewards using the exit function.

7/17

4 Findings

MSS-1 Centralization Risk

Severity: Major

Status: Fixed

Code Location:

MerlinStarterStaking.sol#364-367

Descriptions:

This contract has centralization risk:

Owner can call the withdrawToken function to take all the tokens stored in the staking

contract.

Owner can call the mint function to mint any number of tokens.

 functionfunction withdrawTokenwithdrawToken((address tokenAddraddress tokenAddr,,uint256 amountuint256 amount)) external onlyOwner external onlyOwner{{
 IERC20IERC20 token token == IERC20IERC20((tokenAddrtokenAddr));;
 tokentoken..safeTransfersafeTransfer((_msgSender_msgSender(()),, amount amount));;
 }}

 functionfunction mintmint((address _toaddress _to,,uint256 _amountuint256 _amount)) external external returnsreturns ((boolbool)) {{
 requirerequire((_Is_WhiteContractArr_Is_WhiteContractArr[[msgmsg..sendersender]],," Only white address can mint !"" Only white address can mint !"));;
 _balances_balances[[_to_to]] == _balances _balances[[_to_to]]..addadd((_amount_amount));;
 _totalSupply _totalSupply == _totalSupply _totalSupply..addadd((_amount_amount));;
 returnreturn truetrue;;
 }}

Suggestion:

It is recommended to implement decentralized governance mechanisms to distribute

control and mitigate centralization risks. Specifically, consider implementing a multi-

signature approval process for critical actions.

Resolution:

The client solves this problem by only withdrawing tokens to fundAddress.

8/17

MSS-2 Incompatible With Deflationary Token

Severity: Major

Status: Fixed

Code Location:

MerlinStarterStaking.sol#293

Descriptions:

In the stake function, due to the unknown address of stakingToken , when the token is

deflationary, the amount of tokens transferred to the contract by the user may not be

accurate.

Suggestion:

Since it's not known exactly what type of token this is, it's recommended to confirm whether

such a question would conflict with the design philosophy.

Resolution:

The client has already solved the deflationary coin problem based on our advice.

9/17

MSS-3 May not be able to Withdraw Funds

Severity: Medium

Status: Fixed

Code Location:

MerlinStarterStaking.sol#293,330

Descriptions:

Since the pledged tokens are the same as the tokens that are rewarded, if no tokens are

transferred in, this may result in subsequent users not being able to withdraw the pledged

tokens from the pool.

Suggestion:

It is recommended to check if this is compatible with the design concept.

Resolution:

The client added the maximum number of pledges to solve this problem.

10/17

VME-1 Lack of Events Emit

Severity: Minor

Status: Acknowledged

Code Location:

VMErc20.sol#182,187;

MerlinStarterStaking.sol#335,339,343,349

Descriptions:

The smart contract lacks appropriate events for monitoring sensitive operations, which

could make it difficult to track sensitive actions or detect potential issues.

Suggestion:

It is recommended to emit events for those sensitive functions.

Resolution:

The client is already aware of the proposal.

11/17

VME-2 Lack of Zero Check in mint

Severity: Minor

Status: Fixed

Code Location:

VMErc20.sol#164-169

Descriptions:

When burning tokens, the tokens are transferred to address 0 and the total supply is

reduced by an equal amount, whereas the mint function may mint tokens to address 0 and

increase the total supply by an equal amount, which can lead to incorrect data logging.

Possible impact on subsequent calculations.

Suggestion:

It's recommended to add checksums to disallow minting tokens to zero addresses.

Resolution:

The client has deleted the VMtoken contract.

12/17

VME-3 Code Optimization

Severity: Minor

Status: Fixed

Code Location:

VMErc20.sol#88-90;

MerlinStarterStaking.sol#162,163

Descriptions:

The value of a variable does not change after it is declared, the variable should be declared

as constant .

Suggestion:

It is recommended to add constant to variables.

Resolution:

The client has resolved the issue.

13/17

VME-4 Unnecessary Assignments

Severity: Minor

Status: Fixed

Code Location:

VMErc20.sol#98

Descriptions:

In the constructor , the token for the number of _totalSupply is minted for the contract

creator, but the initial _totalSupply itself is 0, and the uninitialized value in the mapping

_balance was originally 0.

Suggestion:

It is recommended to confirm whether it is necessary to mint quantitative initial tokens for

the contract creator, if not, you can delete the zero assignment.

Resolution:

The client has deleted the VMtoken contract.

14/17

VME-5 Inaccurate Error Messages

Severity: Minor

Status: Fixed

Code Location:

VMErc20.sol#149

Descriptions:

The _transfer function will report an error if from and to are not whitelisted addresses, but

the error message is inaccurate and may mislead the user.

Suggestion:

It`s recommended to change the error message of require to be more accurate.

Resolution:

The client has refined the error message.

15/17

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

16/17

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

17/17

	297_page1.pdf
	297_page2.pdf

