
Audit Report

Mon Jan 29 2024

contact@scalebit.xyz https://twitter.com/scalebit_

Mirco3

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/36

Mirco3 Audit Report

1 Executive Summary

1.1 Project Information

Description Micro3 is a decentralized NFT platform

Type NFT

Auditors ScaleBit

Timeline Fri Dec 22 2023 - Mon Jan 29 2024

Languages Solidity

Platform BSC

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/scalebit/Audit_Final_Phase1_With_Bridge

Commits f1b35bf2043eb1d5fd4ed346c0f40792e7373de3
14eaded4e0f1e729052af97d424404342f212018
a7718170adb988061082ac32cdaf5d58f84de223
0e7cc16aad332e2c9ed3696da9aa62bd2c722e60
f30b55afe4cdb1e79ffb729feb117a3645b809f4

https://github.com/scalebit/Audit_Final_Phase1_With_Bridge
https://github.com/scalebit/Audit_Final_Phase1_With_Bridge/tree/f1b35bf2043eb1d5fd4ed346c0f40792e7373de3
https://github.com/scalebit/Audit_Final_Phase1_With_Bridge/tree/14eaded4e0f1e729052af97d424404342f212018
https://github.com/scalebit/Audit_Final_Phase1_With_Bridge/tree/a7718170adb988061082ac32cdaf5d58f84de223
https://github.com/scalebit/Audit_Final_Phase1_With_Bridge/tree/0e7cc16aad332e2c9ed3696da9aa62bd2c722e60
https://github.com/scalebit/Audit_Final_Phase1_With_Bridge/tree/f30b55afe4cdb1e79ffb729feb117a3645b809f4

2/36

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ERC7 token/ERC721.sol 1f0a17caf33cde44c47133e85e926
587b7646acd

IMNFT interfaces/IMicroNFT.sol 2e1b22e55a90c1b97ab7d0440c30
baca9c020482

IMM interfaces/IMicroManager.sol 21701764288a34089909104d1307
91ae863f5a6c

IPO interfaces/IPriceOracle.sol 8cd2522bfe7b604423fd21e5a6293
631b473eafb

MUT MicroUtility.sol 9b58253b740176b8906f8bd58f68f
df5446e9a99

MBR MicroBridge.sol 30717e658a97792d378ea106ecf35
f0dcb3f7074

MNFT token/MicroNFT.sol d29033ca00fbd13cee3f9526eb2aa
4f2166f106c

MBCCIP MicroBridgeCCIP.sol b54137b82d1a98a46441fbf2abba
8b068e56e310

3/36

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 22 22 0

Informational 0 0 0

Minor 15 15 0

Medium 5 5 0

Major 2 2 0

Critical 0 0 0

4/36

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/36

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/36

2 Summary

This report has been commissioned by Mirco3 to identify any potential issues and
vulnerabilities in the source code of the Mirco3 smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 22 issues of varying severity, listed below.

ID Title Severity Status

MBC-1 Initializers Could be Front-run Medium Fixed

MBC-2 _ccipReceive() Lacks Sender
Verification.

Medium Fixed

MBC-3 Set the Maximum Gas Limit Medium Fixed

MBC-4 To Accommodate Upgrades, It is
Recommended to Make extraArgs
Mutable.

Medium Fixed

MBR-1 Potential Transaction Failure due
to Gas Limit Check in _creditTill()
Function

Major Fixed

MBR-2 The Require Check is Incomplete Medium Fixed

MBR-3 Using Bools for Storage Incurs
Overhead

Minor Fixed

MBR-4 Cache Array Length Outside of
Loop

Minor Fixed

MBR-5 For Operations That will not
Overflow, You could Use

Minor Fixed

7/36

Unchecked

MBR-6 Use Custom Errors Minor Fixed

MBR-7 Don't Initialize Variables with
Default Value

Minor Fixed

MBR-8 Long Revert Strings Minor Fixed

MBR-9 Functions Guaranteed To Revert
When Called By Normal Users Can
be Marked Payable

Minor Fixed

MNF-1 The totalMintsByAddress Was Not
updated

Major Fixed

MNF-2 State Variables Should Be Cached
in Stack Variables Rather Than Re-
reading Them from Storage

Minor Fixed

MNF-3 require() / revert() Statements
Should Have Descriptive Reason
Strings

Minor Fixed

MBR-10 ++i Costs Less Gas Than i++ ,
Especially When It's Used in For-
loops (--i/i-- Too)

Minor Fixed

MBR-11 Using Private rather than Public for
Constants, Saves Gas

Minor Fixed

MBR-12 Use != 0 instead of > 0 for
Unsigned Integer Comparison

Minor Fixed

MBR-13 Event is Missing Indexed Fields Minor Fixed

MBR-14 Functions Not Used Internally
Could be Marked External

Minor Fixed

8/36

MBR-15 Empty Function Body - Consider
commenting why

Minor Fixed

9/36

3 Participant Process

Here are the relevant actors with their respective abilities within the Mirco3 Smart Contract:
Admin

Admin can mint NFTs directly for a recipient or multiple recipients through

adminMint() and adminMintAirdrop() .

Admin can set or update sale details, including timings and profit sharing, using

setSaleDetail() .

Admin can change the funds recipient address with setFundsRecipient() .

Admin can finalize the open edition by setting the edition size and sale end time using

finalizeOpenEdition() .

Admin can mark an ongoing NFT sale as cancelable through cancelSaleEdition() .

Admin can execute an emergency withdrawal of all ETH from the contract with

emergencyWithdraw() .

Admin can withdraw any ERC20 token from the contract using withdrawToken() .

Admin can whitelist a blockchain network for interactions using whitelistChain ().

Admin can denylist a blockchain network from interacting with the contract through

denylistChain() .

User

User can buy NFTs during public sales via purchase() .

User can purchase NFTs in presale using purchasePresale() .

User can withdraw their profit share with withdrawProfitSharing() .

Users can transfer single or batch NFTs across different blockchain networks using

sendFrom() and sendBatchFrom() .

10/36

4 Findings

MBC-1 Initializers Could be Front-run

Severity: Medium

Status: Fixed

Code Location:

MicroBridgeCCIP.sol#60;

MicroBridge.sol#46;

token/MicroNFT.sol#119

Descriptions:

There is a major security vulnerability involving the Initializers of our smart contract, which

potentially allows an attacker to execute these initializers before the contract's normal

initialization process, thereby setting their own values or taking ownership of the contract.

Additionally, the lack of testing and deployment code in our repository to address this

behavior, coupled with the uncertainty of whether contract deployment and initialization

occur within the same transaction, further exacerbates the potential risk.

functionfunction initinit((bytes memory initPayloadbytes memory initPayload)) external external returnsreturns ((boolbool)) {{

Suggestion:

It is recommended to initialize within the deployment code so that deployment and

initialization occur in the same transaction.

Resolution:

This issue has been fixed. The client has already added permissions for init .

11/36

MBC-2 _ccipReceive() Lacks Sender Verification.

Severity: Medium

Status: Fixed

Code Location:

MicroBridgeCCIP.sol#224-227

Descriptions:

According to the official documentation's best security practices,

MicroBridgeCCIP._ccipReceive() needs to validate the sender.

 functionfunction _ccipReceive_ccipReceive((ClientClient..Any2EVMMessage Any2EVMMessage memorymemory any2EvmMessage any2EvmMessage))
 internalinternal
 virtualvirtual
 overrideoverride
 {{
 // decode and load the toAddress// decode and load the toAddress
 ((
 bytesbytes memorymemory nftAddressBytes nftAddressBytes,,
 bytesbytes memorymemory toAddressBytes toAddressBytes,,
 uint256uint256[[]] memorymemory tokenIds tokenIds
))

Suggestion:

It is recommended to add an onlyAllowlisted modifier.

https://docs.chain.link/ccip/tutorials/programmable-token-transfers#transferring-tokens-

and-data-and-pay-in-link

 /// handle a received message/// handle a received message
 functionfunction _ccipReceive_ccipReceive((
 ClientClient..Any2EVMMessage Any2EVMMessage memorymemory any2EvmMessage any2EvmMessage
))
 internalinternal
 overrideoverride
 onlyAllowlistedonlyAllowlisted((
 any2EvmMessageany2EvmMessage..sourceChainSelectorsourceChainSelector,,

https://docs.chain.link/ccip/best-practices/#verify-sender
https://docs.chain.link/ccip/tutorials/programmable-token-transfers#transferring-tokens-and-data-and-pay-in-link
https://docs.chain.link/ccip/tutorials/programmable-token-transfers#transferring-tokens-and-data-and-pay-in-link

12/36

 abiabi..decodedecode((any2EvmMessageany2EvmMessage..sendersender,, ((addressaddress))))
)) // Make sure source chain and sender are allowlisted// Make sure source chain and sender are allowlisted

Resolution:

This issue has been fixed. The client added a modifier.

13/36

MBC-3 Set the Maximum Gas Limit

Severity: Medium

Status: Fixed

Code Location:

MicroBridgeCCIP.sol#367

Descriptions:

According to the documentation, gasLimit is the maximum gas that can be consumed on

the target chain. However, in the MicroBridgeCCIP._send() function, it specifies

minGasToTransferAndStore

 ClientClient..EVM2AnyMessage EVM2AnyMessage memorymemory evm2AnyMessage evm2AnyMessage == Client Client..EVM2AnyMessageEVM2AnyMessage(({{
 receiverreceiver:: abi abi..encodeencode((_receiver_receiver)),, // ABI-encoded receiver address// ABI-encoded receiver address
 datadata:: payload payload,, // ABI-encoded string message// ABI-encoded string message
 tokenAmountstokenAmounts:: newnew ClientClient..EVMTokenAmountEVMTokenAmount[[]]((00)),, // Empty array indicating no// Empty array indicating no
tokens are being senttokens are being sent
 extraArgsextraArgs:: Client Client.._argsToBytes_argsToBytes((
 ClientClient..EVMExtraArgsV1EVMExtraArgsV1(({{
 gasLimitgasLimit:: minGasToTransferAndStore minGasToTransferAndStore,,
 strictstrict:: falsefalse
 }}))
)),,

Suggestion:

It is recommended to set it to the maximum gas limit.

Resolution:

This issue has been fixed. The client set the maximum gas.

https://docs.chain.link/ccip/best-practices/#setting-gaslimit

14/36

MBC-4 To Accommodate Upgrades, It is Recommended to
Make extraArgs Mutable.

Severity: Medium

Status: Fixed

Code Location:

MicroBridgeCCIP.sol#360-368

Descriptions:

To accommodate future upgrades, extraArgs needs to be mutable, but it is fixed in the

MicroBridgeCCIP._send() function.

 ClientClient..EVM2AnyMessage EVM2AnyMessage memorymemory evm2AnyMessage evm2AnyMessage == Client Client..EVM2AnyMessageEVM2AnyMessage(({{
 receiverreceiver:: abi abi..encodeencode((_receiver_receiver)),, // ABI-encoded receiver address// ABI-encoded receiver address
 datadata:: payload payload,, // ABI-encoded string message// ABI-encoded string message
 tokenAmountstokenAmounts:: newnew ClientClient..EVMTokenAmountEVMTokenAmount[[]]((00)),, // Empty array indicating no// Empty array indicating no
tokens are being senttokens are being sent
 extraArgsextraArgs:: Client Client.._argsToBytes_argsToBytes((
 ClientClient..EVMExtraArgsV1EVMExtraArgsV1(({{
 gasLimitgasLimit:: minGasToTransferAndStore minGasToTransferAndStore,,
 strictstrict:: falsefalse
 }}))
)),,

In fact, the latest version of the client contract, EVMExtraArgsV1 , only has one element,

while the code still contains two elements.

 // bytes4(keccak256("CCIP EVMExtraArgsV1"));// bytes4(keccak256("CCIP EVMExtraArgsV1"));
 bytes4bytes4 publicpublic constantconstant EVM_EXTRA_ARGS_V1_TAG EVM_EXTRA_ARGS_V1_TAG == 0x97a657c90x97a657c9;;
 structstruct EVMExtraArgsV1EVMExtraArgsV1 {{
 uint256uint256 gasLimit gasLimit;;
 }}

Suggestion:

It is recommend to make extraArgs mutable.

Resolution:

https://docs.chain.link/ccip/best-practices/#using-extraargs
https://github.com/smartcontractkit/ccip/blob/84637667ac5f353ec1ccb80220afe14e43438a5c/contracts/src/v0.8/ccip/libraries/Client.sol#L31-L33

15/36

This issue has been fixed. The client has adopted our suggestions.

16/36

MBR-1 Potential Transaction Failure due to Gas Limit Check in
_creditTill() Function

Severity: Major

Status: Fixed

Code Location:

MicroBridge.sol#325

Descriptions:

In the MicroBridge._creditTill() function, there is a check if (gasleft() <

minGasToTransferAndStore) break . If there is not enough gas to process, the current index

is stored for the next loop iteration. Currently, on Ethereum and EVM-compatible chains,

calls can consume at most 63/64 of the parent's call gas (See EIP-150). This may lead to a

situation of insufficient gas.

 functionfunction _creditTill_creditTill((
 address _nftAddressaddress _nftAddress,,
 uint16 _srcChainIduint16 _srcChainId,,
 address _toAddressaddress _toAddress,,
 uint256 _startIndexuint256 _startIndex,,
 uint256uint256[[]] memory _tokenIds memory _tokenIds
)) internal internal returnsreturns ((uint256uint256)) {{
 uint256 i uint256 i == _startIndex _startIndex;;
 whilewhile ((i i << _tokenIds _tokenIds..lengthlength)) {{
 // if not enough gas to process, store this index for next loop// if not enough gas to process, store this index for next loop
 ifif ((gasleftgasleft(()) << minGasToTransferAndStore minGasToTransferAndStore)) breakbreak;;

 IMicroNFTIMicroNFT((_nftAddress_nftAddress))..bridgeInbridgeIn((
 _toAddress_toAddress,,
 uint64uint64((_srcChainId_srcChainId)),,
 _tokenIds_tokenIds[[ii]]
));;
 ii++++;;
 }}

 // indicates the next index to send of tokenIds,// indicates the next index to send of tokenIds,
 // if i == tokenIds.length, we are finished// if i == tokenIds.length, we are finished

https://eips.ethereum.org/EIPS/eip-150

17/36

 returnreturn i i;;
 }}

Suggestion:

It is recommend to change the check to account for this 63/64 rule:

if (gasleft() < minGasToTransferAndStore * 64 / 63) break;if (gasleft() < minGasToTransferAndStore * 64 / 63) break;

Resolution:

This issue has been fixed. The client has implemented our recommendations.

18/36

MBR-2 The Require Check is Incomplete

Severity: Medium

Status: Fixed

Code Location:

MicroBridge.sol#171

Descriptions:

In the MicroBridge._send() function, the protocol provides the native fee to lzEndpoint for

use. The validation in the code, require(msg.value >= microProtocolFee, "Need more gas

fee"); , is incomplete as it does not consider the native fee.

 //Start to pay the protocol fee//Start to pay the protocol fee
 uint256 microProtocolFee uint256 microProtocolFee == getMicroFeeWeigetMicroFeeWei((_tokenIds_tokenIds..lengthlength));;

 requirerequire((msgmsg..valuevalue >=>= microProtocolFee microProtocolFee,, "Need more gas fee""Need more gas fee"));;

 _payoutMicroFee_payoutMicroFee((_tokenIds_tokenIds..lengthlength));;

Suggestion:

It is recommended to consider the native fee in the require statement.

19/36

MBR-3 Using Bools for Storage Incurs Overhead

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#12

Descriptions:

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to

avoid Gsset (20000 gas) when changing from false to true , after having been true in the

past. See source.

boolbool privateprivate initialized initialized;;

Suggestion:

It is recommended to use uint256(1) and uint256(2) for true/false.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27

20/36

MBR-4 Cache Array Length Outside of Loop

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#176

Descriptions:

If not cached, the solidity compiler will always read the length of the array during each

iteration. That is, if it is a storage array, this is an extra sload operation (100 additional extra

gas for each iteration except for the first) and if it is a memory array, this is an extra mload

operation (3 additional gas for each iteration except for the first).

forfor ((uint256uint256 i i == 00;; i i << _tokenIds _tokenIds..lengthlength;; i i++++)) {{

Suggestion:

It is recommended to cache the array length before entering the loop.

21/36

MBR-5 For Operations That will not Overflow, You could Use
Unchecked

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#176

Descriptions:

For Operations that will not overflow, you could use unchecked.

forfor ((uint256uint256 i i == 00;; i i << _tokenIds _tokenIds..lengthlength;; i i++++)) {{

Suggestion:

It is recommended to use Solidity's unchecked block to save the overflow checks.

Resolution:

This issue has been fixed. The client used unchecked .

22/36

MBR-6 Use Custom Errors

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#47

Descriptions:

Instead of using error strings, to reduce deployment and runtime costs, you should use

Custom Errors. This would save both deployment and runtime costs.Source

requirerequire((!!initializedinitialized,, "Already initialized""Already initialized"));;

Suggestion:

It is recommended to use Custom Errors.

Resolution:

This issue has been fixed. The client has implemented custom errors.

https://soliditylang.org/blog/2021/04/21/custom-errors/

23/36

MBR-7 Don't Initialize Variables with Default Value

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#176

Descriptions:

Uninitialized variables are assigned with the types' default value. Explicitly initializing a

variable with its default value costs unnecessary gas.

forfor ((uint256uint256 i i == 00;; i i << _tokenIds _tokenIds..lengthlength;; i i++++)) {{

Suggestion:

It is recommended not to use default values to initialize variables.

Resolution:

This issue has been fixed. The client doesn't initialize variables with default Value.

24/36

MBR-8 Long Revert Strings

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#348

Descriptions:

The error message string provided in the require function is too long and exceeds the EVM

limit.

requirerequire((successsuccess,, "TransferHelper: ETH_TRANSFER_FAILED""TransferHelper: ETH_TRANSFER_FAILED"));;

Suggestion:

It is recommended to shorten the error message.

Resolution:

This issue has been fixed. The client has shortened the error message.

25/36

MBR-9 Functions Guaranteed To Revert When Called By
Normal Users Can be Marked Payable

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#341

Descriptions:

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries

to pay the function. Marking the function as payable will lower the gas cost for legitimate

callers because the compiler will not include checks for whether a payment was provided.

The extra opcodes avoided are

CALLVALUE(2),DUP1(3),ISZERO(3),PUSH2(3),JUMPI(10),PUSH1(3),DUP1(3),REVERT(0),JUMPDEST(1),PO

which costs an average of about 21 gas per call to the function, in addition to the extra

deployment cost.

functionfunction emergencyWithdrawemergencyWithdraw(()) external onlyOwner external onlyOwner {{

Suggestion:

It is recommended that functions guaranteed to revert when called by normal users can be

marked payable.

26/36

MNF-1 The totalMintsByAddress Was Not updated

Severity: Major

Status: Fixed

Code Location:

token/MicroNFT.sol#286-359

Descriptions:

In the purchase function's code, there is a restriction on the number of NFTs that can be

purchased by the same address, capped at maxSalePurchasePerAddress . The condition set

is that the total of totalMintsByAddress plus quantity , minus presaleMintsByAddress ,

should not exceed maxSalePurchasePerAddress . This means that totalMintsByAddress

represents the aggregate number of NFTs minted in both purchase and purchasePresale.

 ifif ((
 saleConfigsaleConfig..maxSalePurchasePerAddressmaxSalePurchasePerAddress !=!= 00 &&&&
 totalMintsByAddresstotalMintsByAddress[[_msgSender_msgSender(())]]..addadd((quantityquantity))..subsub((
 presaleMintsByAddresspresaleMintsByAddress[[_msgSender_msgSender(())]]
)) >>
 saleConfigsaleConfig..maxSalePurchasePerAddressmaxSalePurchasePerAddress
)) {{
 revertrevert(("Purchase_TooManyForAddress""Purchase_TooManyForAddress"));;
 }}

However, in purchasePresale , totalMintsByAddress is not updated. Consequently, this

may prevent users who participated in the presale from purchasing NFTs in the public sale,

unless the number they wish to buy exceeds the amount purchased during the presale.

Additionally, this could also prevent presale participants from being eligible for rewards.

Suggestion:

It is recommended to update the value of totalMintsByAddress within purchasePresale .

Resolution:

This issue has been fixed. The client has already updated the totalMintsByAddress within

the purchasePresale function.

27/36

MNF-2 State Variables Should Be Cached in Stack Variables
Rather Than Re-reading Them from Storage

Severity: Minor

Status: Fixed

Code Location:

token/MicroNFT.sol#557

Descriptions:

In Solidity, state variables ought to be cached in stack variables rather than repeatedly

reading them from storage.

tokenId tokenId == sourceGetChainPrependsourceGetChainPrepend((_currentTokenId_currentTokenId));;

Suggestion:

It is recommended to cache state variables in local variables within functions to reduce

repetitive reads from storage in Solidity.

28/36

MNF-3 require() / revert() Statements Should Have
Descriptive Reason Strings

Severity: Minor

Status: Fixed

Code Location:

token/MicroNFT.sol#465

Descriptions:

In Solidity, it's essential to include descriptive reason strings within require() or revert()

statements.

requirerequire((

Suggestion:

It is recommended to add reason strings to require() or revert() .

29/36

MBR-10 ++i Costs Less Gas Than i++ , Especially When It's
Used in For-loops (--i/i-- Too)

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#176

Descriptions:

The gas cost of ++i is lower than i++ , particularly when utilized in for-loops (--i/i-- as well).

forfor ((uint256 i uint256 i == 00;; i i << _tokenIds _tokenIds..lengthlength;; i i++++)) {{

Suggestion:

It is recommended to use ++i instead of i++ .

30/36

MBR-11 Using Private rather than Public for Constants, Saves
Gas

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#11

Descriptions:

If needed, the values can be read from the verified contract source code, or if there are

multiple values there can be a single getter function that returns a tuple of the values of all

currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler not

having to create non-payable getter functions for deployment calldata, not having to store

the bytes of the value outside of where it's used, and not adding another entry to the

method ID table.

uint16uint16 publicpublic constantconstant FUNCTION_TYPE_SEND FUNCTION_TYPE_SEND == 11;;
11

Suggestion:

It is recommended to use private rather than public for constants.

Resolution:

This issue has been fixed. The client used private for constants.

31/36

MBR-12 Use != 0 instead of > 0 for Unsigned Integer
Comparison

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#54

Descriptions:

When dealing with unsigned integer types, comparisons with != 0 are cheaper than with >

0 .

_minGasToTransferAndStore _minGasToTransferAndStore >> 00,,

Suggestion:

It is recommended to use != 0 instead of > 0 for unsigned integer comparison.

32/36

MBR-13 Event is Missing Indexed Fields

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#41

Descriptions:

Index event fields make the field more quickly accessible to off-chain tools that parse events.

However, note that each index field costs extra gas during emission, so it's not necessarily

best to index the maximum allowed per event (three fields). Each event should use three

indexed fields if there are three or more fields and gas usage is not particularly of concern

for the events in question. If there are fewer than three fields, all of the fields should be

indexed.

event event CreditStoredCreditStored((bytes32 _hashedPayloadbytes32 _hashedPayload,, bytes _payload bytes _payload));;

Suggestion:

It is recommended to evaluate the necessity of indexing fields based on the specific needs of

off-chain tools and gas usage. For events with three or more fields where gas consumption

isn't critical, consider indexing up to three relevant fields. For events with fewer than three

fields, index all available fields to optimize off-chain tool accessibility. Regularly assess and

adjust indexing strategies based on the requirements of off-chain tools and gas efficiency.

33/36

MBR-14 Functions Not Used Internally Could be Marked
External

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#64

Descriptions:

In Solidity, functions that are not internally used within the contract can be more suitably

marked as external. This ensures clarity in code and signifies that these functions are

intended to be accessed from outside the contract by other contracts or external entities.

functionfunction estimateSendFeeestimateSendFee((
functionfunction sendFromsendFrom((
functionfunction sendBatchFromsendBatchFrom((

Suggestion:

It is recommended to consider marking functions that are not internally used within the

contract as external to enhance code readability and explicitly indicate that these functions

are meant to be accessed externally. This practice provides clarity and aligns with the

intended usage of the functions, making the contract interface more understandable for

external interactions.

Resolution:

This issue has been fixed. The client has already changed to external visibility.

34/36

MBR-15 Empty Function Body - Consider commenting why

Severity: Minor

Status: Fixed

Code Location:

MicroBridge.sol#44

Descriptions:

In smart contracts, having a function (especially a constructor) with an empty body can

cause confusion for readers. Although sometimes a function with an empty body is justified

(for example, when only the behavior of the base class constructor is needed), it can leave

other developers or auditors puzzled as to why the function is empty and whether any

crucial implementation code is missing.

constructorconstructor((address _lzEndpointaddress _lzEndpoint)) NonblockingLzAppNonblockingLzApp((_lzEndpoint_lzEndpoint)) {{}}

Suggestion:

It is recommended to add a comment next to the empty function body, explaining why it is

empty. For constructors, the comment should clarify that the constructor only calls the base

class constructor and that no further initialization logic is necessary.

35/36

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

36/36

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	234_page1.pdf
	234_page2.pdf

