
Audit Report

Wed Aug 30 2023

contact@scalebit.xyz https://twitter.com/scalebit_

MobyDEX Smart Contract

https://twitter.com/scalebit_
https://www.scalebit.xyz/

MobyDEX Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description A launchpad and staking project

Type Launchpad

Auditors ScaleBit

Timeline Mon Aug 21 2023 - Wed Aug 30 2023

Languages Solidity

Platform opBNB

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/mobydex-labs/mobydex-core

Commits b9c86a5ea3587a966e35b6d67931421ef6c5a309

f25277096cce2ab5e49518655837683502d8b0bd

518a67794095d0b505eefd0ccde0fe968751329f

https://github.com/mobydex-labs/mobydex-core
https://github.com/mobydex-labs/mobydex-core/tree/b9c86a5ea3587a966e35b6d67931421ef6c5a309
https://github.com/mobydex-labs/mobydex-core/tree/f25277096cce2ab5e49518655837683502d8b0bd
https://github.com/mobydex-labs/mobydex-core/tree/518a67794095d0b505eefd0ccde0fe968751329f

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOBYS src/MOBYSale.sol 7763a9a82b7792b7f698d151f7dcd

8825e844a6a

MAS src/Masterchef.sol 7751510a36804d7fea51113ea9727

8668e306dfe

IMOBY src/interfaces/IesMOBY.sol 9e5723fc2cbf8fa99ec5ea3681c7d

e3e7d92dfe8

MOBYS src/MOBYSale.sol fb3f866397eb2c58bf5b0a0ec0d3

22afdfd08968

IMOBY src/interfaces/IesMOBY.sol 016b9e67fc296e925daab42e30e1

bac2c10dd9c4

MOBYS src/MOBYSale.sol 7cabde337653111da624db5e71750

323959a6cef

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 10 6 4

Informational 1 0 1

Minor 3 2 1

Medium 2 1 1

Major 4 3 1

Critical 0 0 0

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are

not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way that

is closest to the real attack. The main entrance and scope of security testing are stated in

the conventions in the "Audit Objective", which can expand to contexts beyond the scope

according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

2 Summary

This report has been commissioned by MobyDEX to identify any potential issues and

vulnerabilities in the source code of the MobyDEX smart contract, as well as any contract

dependencies that were not part of an officially recognized library. In this audit, we have

utilized various techniques, including manual code review and static analysis, to identify

potential vulnerabilities and security issues.

During the audit, we identified 10 issues of varying severity, listed below.

ID Title Severity Status

MAS-1 Lack of Events Emit Minor Acknowledged

MAS-2 Unchecked Return Value Medium Fixed

MAS-3 Lack of Validation for Zero Address Informational Acknowledged

MAS-4 Centralization Risk Major Acknowledged

MAS-5 Incompatible with Deflation Tokens Medium Acknowledged

MOB-1 Unable to Claim Sale Token Major Fixed

MOB-2 Incorrect Conditional Judgment Major Fixed

MOB-3 Lack of Validation for msg.value Major Fixed

MOB-4 Unused State Variable Minor Fixed

MOB-5 Uncompilable Code Minor Fixed

3 Participant Process

Here are the relevant actors with their respective abilities within the MobyDEX Smart

Contract:

Admin

Admin can update the treasury address through updateTreausry .

Admin can update the rewardPerSec through updateRewardPerSec .

Admin can update the esRewardPerSec through updateEsRewardPerSec .

Admin can update the pool , rewardPerSec and esRewardPerSec through

updateAndSetRewardPerSec .

Admin can update the multiplier through updateMultiplier .

Admin can add a new LP to the pool through add .

Admin can update the given pool's reward allocation point through set .

Admin can set the start time through setStartTime .

Admin can initialize the MOBYSale contract through initialize .

Admin can set the amount of offeringToken through setOfferingAmount .

Admin can set the amount of lpToken through setRaisingAmount .

Admin can withdraw the lpToken in the MOBYSale contract through

withdrawAdmin and finalWithdraw .

Admin can withdraw the offeringToken in the MOBYSale contract through

finalWithdraw .

User

User can deposit the LP Toekn through deposit .

User can withdraw the LP Token through withdraw and emergencyWithdraw .

User can buy the offeringToken through deposit .

User can claim the offeringToken and withdraw the lpToken through harvest .

4 Findings

MAS-1 Lack of Events Emit

Severity: Minor

Status: Acknowledged

Code Location:

src/Masterchef.sol#111,115,119,128,138,164,379

Descriptions:

The smart contract lacks appropriate events for monitoring sensitive operations, which could

make it difficult to track important actions or detect potential issues.

Suggestion:

It is recommended to emit events for these update functions.

MAS-2 Unchecked Return Value

Severity: Medium

Status: Fixed

Code Location:

src/Masterchef.sol#295

Descriptions:

The return value of the stake in the transferPendingRewards function is not checked

and the stake function in the IesMOBY interface contract is different from the esMOBY

contract, there is a return value in the IesMOBY interface contract but not in the esMOBY

contract.

Suggestion:

It is recommended to check the return value in the transferPendingRewards function.

Resolution:

The client has followed our suggestion and fixed the issue.

MAS-3 Lack of Validation for Zero Address

Severity: Informational

Status: Acknowledged

Code Location:

src/Masterchef.sol#107

Descriptions:

There is no check for the zero address.

Suggestion:

It is recommended to add a check for the zero address.

MAS-4 Centralization Risk

Severity: Major

Status: Acknowledged

Code Location:

src/Masterchef.sol#107,111,115,119,128,138,164,379;

src/MOBYSale.sol#57,84,89,175,180

Descriptions:

There are some risks of centralization in the contract:

Admin can update the treasury address through updateTreausry .

Admin can update the rewardPerSec through updateRewardPerSec .

Admin can update the esRewardPerSec through updateEsRewardPerSec .

Admin can update the pool , rewardPerSec and esRewardPerSec through

updateAndSetRewardPerSec .

Admin can update the multiplier through updateMultiplier .

Admin can add a new LP to the pool through add .

Admin can update the given pool's reward allocation point through set .

Admin can set the start time through setStartTime .

Admin can initialize the MOBYSale contract through initialize .

Admin can set the amount of offeringToken through setOfferingAmount .

Admin can set the amount of lpToken through setRaisingAmount .

Admin can withdraw the lpToken in the MOBYSale contract through

withdrawAdmin and finalWithdraw .

Admin can withdraw the offeringToken in the MOBYSale contract through

finalWithdraw .

Suggestion:

It is recommended to take some measures to mitigate centralization risk.

MAS-5 Incompatible with Deflation Tokens

Severity: Medium

Status: Acknowledged

Code Location:

src/Masterchef.sol

Descriptions:

The MasterChef contracts do not appear to support rebasing/deflationary/inflationary tokens

whose balance changes during transfers or over time.

Suggestion:

It is recommended to add the necessary checks including at least verifying the amount of

tokens transferred to contracts before and after the actual transfer to infer any fees/interest.

MOB-1 Unable to Claim Sale Token

Severity: Major

Status: Fixed

Code Location:

src/MOBYSale.sol#97

Descriptions:

In the claim function, the variable user.claimableAmount is assigned a value of 0 at

L106, and the user will not receive the Token when the function executes the transfer at

L108.

Suggestion:

It is recommended to assigning the value of a variable to a temporary variable and then

transfer the Token with the value of the temporary variable.

Resolution:

The client has followed our suggestion and fixed the issue.

MOB-2 Incorrect Conditional Judgment

Severity: Major

Status: Fixed

Code Location:

src/MOBYSale.sol#185

Descriptions:

In the finalWithdraw function, when lpToken= address(0) , the judgment condition is

_lpAmount > address(this).balance , meaning that the amount withdrawn needs to

be greater than the balance in the contract, which will result in the withdrawals never passing

the conditional checks, resulting in the unsold offeringToken being locked in the

contract. And the_offerAmount < offeringToken.balanceOf(address(this)) will

result in the unsold offeringToken can't be withdrawn completely.

Suggestion:

It is recommended to modify the judgment condition to _lpAmount <=

address(this).balance and _offerAmount <=

offeringToken.balanceOf(address(this)) .

Resolution:

The client has followed our suggestion and fixed the issue.

MOB-3 Lack of Validation for msg.value

Severity: Major

Status: Fixed

Code Location:

src/MOBYSale.sol#94

Descriptions:

In the deposit function, it is supported to deposit lpToken and ETH when

address(lpToken) != address(0) , the user can deposit both lpToken and

msg.value at the same time, which will result in the deposited ETH lock in the contract

and being unable to be withdrawn.

Suggestion:

It is recommended to add a check for msg.value in the address(lpToken) ! =

address(0) condition, for example: require(msg.value == 0, "need msg.value =

0") ;.

Resolution:

The client has followed our suggestion and fixed the issue.

MOB-4 Unused State Variable

Severity: Minor

Status: Fixed

Code Location:

src/MOBYSale.sol#42

Descriptions:

The variable adminClaimed is not used in the contract.

Suggestion:

It is recommended to remove the unused variable.

Resolution:

The client has followed our suggestion and fixed the issue.

MOB-5 Uncompilable Code

Severity: Minor

Status: Fixed

Code Location:

src/MOBYSale.sol#3

Descriptions:

Missing ; after the version pragma caused the code not to compile.

Suggestion:

It is recommended to add ; after the version pragma.

Resolution:

The client has followed our suggestion and fixed the issue.

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or to

optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited review

at the time provided. Results may not be complete and do not include all vulnerabilities. The

review and this report are provided on an as-is, where-is, and as-available basis. You agree

that your access and/or use, including but not limited to any associated services, products,

protocols, platforms, content, and materials, will be at your own risk. A report does not imply

an endorsement of any particular project or team, nor does it guarantee its security. These

reports should not be relied upon in any way by any third party, including for the purpose of

making any decision to buy or sell products, services, or any other assets. TO THE FULLEST

EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS,

AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

