
Audit Report

Tue Apr 09 2024

contact@scalebit.xyz https://twitter.com/scalebit_

Premius Market

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Premius Market Audit Report

1 Executive Summary

1.1 Project Information

Description Marketplace & DEX for trading airdrop allocations, tokens and
points.

Type DeFi

Auditors ScaleBit

Timeline Fri Mar 29 2024 - Thu Apr 04 2024

Languages Solidity

Platform Ethereum

Methods Architecture Review, Unit Testing, Manual Review

1/15

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

TMA Tmarket.sol abcf939523efbe9fcb2f3241b525e2
25731db641

PMA PremiusMarket.sol ec92582c9afcf7e457d6f4ee4ac249
661647e37a

2/15

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 4 3 1

Informational 1 0 1

Minor 2 2 0

Medium 0 0 0

Major 1 1 0

Critical 0 0 0

3/15

1.4 MoveBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/15

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/15

2 Summary

This report has been commissioned by Premius Market to identify any potential issues and
vulnerabilities in the source code of the Premius Market smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 4 issues of varying severity, listed below.

ID Title Severity Status

PMA-1 Excess Funds Not Returned Major Fixed

PMA-2 Calculated Risk Minor Fixed

PMA-3 Missing Decimals Check Minor Fixed

PMA-4 Centralization Risk Informational Acknowledged

6/15

3 Participant Process

Here are the relevant actors with their respective abilities within the Premius Market Smart
Contract :
Deployer

Deployer can initialize adminAddress and feeWalletAddress through the

constructor function, and set DEFAULT_ADMIN_ROLE , OPERATOR_ROLE and

initialize config.

Admin

Admin can set the Role for the specified address through the grantRole function.

Operator

Operators can create new ACTIVE tokens through the createToken function.

Operators can set the token and SettleRate through the tokenToSettlePhase

function.

Operator can switch the status of Token to active/inactive through

tokenToSettlePhase function

Operator can force the token in the SETTLE state to inactive through the

tokenForceCancelSettlePhase function.

Operator can update settleDuration through updateSettleDuration function.

Operator can forcefully close the order and return the funds through the

forceCancelOrder function.

Operator can forcefully close orders in batches through the forceCancelOrders

function.

Operator can use the settle2Steps function to handle orders that cannot be directly

settled by tokens.

Operator can call the settle2Steps function in batches through the

settle2StepsBatch function.

Operator can update feeSettle , feeWallet , feeRefund , pledgeRate through the

updateConfig function.

Operator can set the platform's whitelist token address through the

setAcceptedTokens function.

7/15

Operator can use the withdrawStuckToken function to withdraw the ERC20 Token

balance in the contract that is not acceptedTokens .

User

Users can create offers to buy or sell tokens through the newOffer function, and

hand over the funds to contract management.

Users can specifically create Offers traded in ETH through the newOfferETH function.

Users can partially or fully fulfill existing offers through the fillOffer function, specify

tokens to be managed by the contract, and update quotes and status.

Users can specifically create Orders for ETH transactions through the fillOfferETH

function.

Users can create Offers in batches through the fillOffers/fillOffersETH function.

Users can close the offer through the cancelOffer function and return the funds after

deducting the handling fee.

Users can use the settleFilled function to transfer trading tokens and release locked

funds or collateral after the transaction is executed, and transfer the designated

tokens from the seller to the buyer to complete the settlement of the completed order.

Users can call the settleFilled function in batches through the settleFilleds function.

Users (buyer) can cancel settlement through the settleCancelled function and return

the collateral to the buyer.

Users can call the settleCancelled function in batches through the settleCancelleds

function.

8/15

4 Findings

PMA-1 Excess Funds Not Returned

Severity: Major

Status: Fixed

Code Location:

PreMarket.sol#870

Descriptions:

The excess funds invested by the user into the contract were not returned, Located at

newOfferETH , fillOfferETH , fillOffersETH .

require(_ethAmount <= msg.value, "Insufficient Funds");require(_ethAmount <= msg.value, "Insufficient Funds");
......
require(msg.value >= totalEthAmount, "Insufficient Funds");require(msg.value >= totalEthAmount, "Insufficient Funds");

Suggestion:

It is recommended to return excess funds.

Resolution:

have added refund logic in the newOfferETH , fill0fferETH , and fillOffersETH functions.

 // (PMA-1)Refund excess ETH// (PMA-1)Refund excess ETH
 if (msg.value > _ethAmount) {if (msg.value > _ethAmount) {
 uint256 excessAmount = msg.value - _ethAmount;uint256 excessAmount = msg.value - _ethAmount;
 (bool refundSuccess,) = msg.sender.call{value: excessAmount}("");(bool refundSuccess,) = msg.sender.call{value: excessAmount}("");
 require(refundSuccess, "Refund of excess ETH failed");require(refundSuccess, "Refund of excess ETH failed");
 }}

9/15

PMA-2 Calculated Risk

Severity: Minor

Status: Fixed

Code Location:

PreMarket.sol#433,516

Descriptions:

1. The variable pledgeRate is set through the function updateConfig . OPERATOR can

set pledgeRate arbitrarily. When creating an offer, risks such as over-collateralization

may occur when calculating collateral. At the same time, when transferring, since the

calculation of collateral depends on pledgeRate, the amount of _transferAmount is

unexpected.

uint256 collateral = (value * config.pledgeRate) / WEI6;uint256 collateral = (value * config.pledgeRate) / WEI6;
......
_transferAmount = (offer.collateral * amount) / offer.amount;_transferAmount = (offer.collateral * amount) / offer.amount;

2. When calculating the matching of different decimals tokens in the contract during the

settlement phase, tokenAmount depends on the setting of OPERATOR in the

tokenToSettlePhase function, and there may be calculation risks caused by

OPERATOR.

uint256 tokenAmount = (order.amount * token.settleRate) / WEI6;uint256 tokenAmount = (order.amount * token.settleRate) / WEI6;

Suggestion:

It is recommended that given a setting range, the expectation is that it is divisible.

Resolution:

The official confirmed the mortgage rate range and made restrictions. In addition, the

impact of settleRate on exchange will be determined by OPERATOR.

require(pledgeRate_ >= WEI6 / 100 && pledgeRate_ <= WEI6, "Pledge Rate out of range");require(pledgeRate_ >= WEI6 / 100 && pledgeRate_ <= WEI6, "Pledge Rate out of range");

10/15

PMA-3 Missing Decimals Check

Severity: Minor

Status: Fixed

Code Location:

PreMarket.sol#457

Descriptions:

Lack of decimals check. When creating an offer, there may be inconsistencies in the decimals

of the corresponding currency. Since newOfferETH is recorded with the value amount

instead of msg.value, it may cause problems, for example, ETH and USDC, because the

decimals of USDC are 6 , the decimals of ETH is 18. When calculating _ethAmount , assume

pledgeRate/WEI6=1, then msg.value only needs to be greater than x*1e6, but the

_newOffer record value is the parameter amount.

require(_ethAmount <= msg.value, "Insufficient Funds");require(_ethAmount <= msg.value, "Insufficient Funds");

Suggestion:

It is recommended to take measures to mitigate this issue.

Resolution:

Through convertDecimalsCeil , convertDecimals function ensures accuracy when handling

tokens of different precisions.

uint8 exTokenDecimals;uint8 exTokenDecimals;
if (offer.exToken == address(0)) {if (offer.exToken == address(0)) {
exTokenDecimals = 18;exTokenDecimals = 18;
} else {} else {
exTokenDecimals = IERC20Metadata(offer.exToken).decimals();exTokenDecimals = IERC20Metadata(offer.exToken).decimals();
}}
uint256 collateral = convertDecimals(uint256 collateral = convertDecimals(
(order.amount * offer.collateral) / offer.amount,(order.amount * offer.collateral) / offer.amount,
18,18,
exTokenDecimalsexTokenDecimals
););
uint256 value = convertDecimals(uint256 value = convertDecimals(

11/15

(order.amount * offer.value) / offer.amount,(order.amount * offer.value) / offer.amount,
18,18,
exTokenDecimalsexTokenDecimals
););

12/15

PMA-4 Centralization Risk

Severity: Informational

Status: Acknowledged

Code Location:

PreMarket.sol#1149

Descriptions:

Centralization risk was identified in the smart contract.

OPERATOR can withdraw funds from the contract through the withdrawStuckToken

function, and OPERATOR can modify acceptedTokens .

 function withdrawStuckToken(address _token,address _to) externalfunction withdrawStuckToken(address _token,address _to) external
onlyRole(OPERATOR_ROLE) { onlyRole(OPERATOR_ROLE) {
 require(_token != address(0) && !acceptedTokens[_token],"Invalid Token Address");require(_token != address(0) && !acceptedTokens[_token],"Invalid Token Address");
 uint256 _contractBalance = IERC20(_token).balanceOf(address(this));uint256 _contractBalance = IERC20(_token).balanceOf(address(this));
 IERC20(_token).safeTransfer(_to, _contractBalance);IERC20(_token).safeTransfer(_to, _contractBalance);
 }}

Suggestion:

It is recommended to take measures to mitigate this issue.

Resolution:

The official description is reserved for emergency situations and will be used in the early

stages of the contract.

13/15

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

14/15

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

15/15

	305_page1.pdf
	305_page2.pdf

