Quantum Purse
Audit Report

Mon Dec 15 2025

% contact@bitslab.xyz Y https://twitter.com/scalebit_

©

ScaleBit

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Quantum Purse Audit Report

1.1 Project Information

Description Quantum Purse is a Web3 wallet for CKB.
Type Wallet

Auditors jolyon, poetyellow, fishmen

Timeline Wed Nov 19 2025 - Mon Dec 15 2025
Languages Javascript, Typescript

Platform CKB

Methods Dependency Check, Fuzzing, Static Analysis, Manual Review

1/23

1.2 Files in Scope

The following are the directories of the original reviewed files.

Directory

https://github.com/tea2x/quantum-purse/src

2/23

1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 9 9 0
Critical 0 0 0
Major 1 1 0
Medium 1 1 0
Minor 2 2 0

Informational 5 5 0

3/23

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Integer overflow/underflow

¢ Infinite Loop

¢ Infinite Recursion

e Race Condition

e Traditional Web Vulnerabilities
e Memory Exhaustion Attack

e Disk Space Exhaustion Attack
e Side-channel Attack

e Denial of Service

e Replay Attacks

e Double-spending Attack

e Eclipse Attack

e Sybil Attack

e FEavesdropping Attack

e Business Logic Issues

e Contract Virtual Machine Vulnerabilities

e Coding Style Issues

4/23

1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis",
"Fuzz Testing", and "Manual Review" to conduct a comprehensive security test on the
code in a manner closest to real attacks. The main entry points and scope of the security
testing are specified in the "Files in Scope", which can be expanded beyond the scope
according to actual testing needs. The main types of this security audit include:

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

Alarge amount of randomly generated data was inputted into the software to try and trigger
potential errors and exceptional paths.

The scope of the code is explained in section 1.2.

e Clarify the scope, objectives, and key requirements of the audit.

e (ollect related materials such as software documentation, architecture diagrams, and
lists of dependency libraries to provide background information for the audit.

e Use automated tools to generate a list of the software's dependency libraries and
employ professional tools to scan these libraries for security vulnerabilities, identifying
outdated or known vulnerable dependencies.

e Select and configure automated static analysis tools suitable for the project, perform
automated scans to identify security vulnerabilities, non-standard coding, and

5/23

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

Design a series of fuzz testing cases aimed at testing the software's ability to handle
exceptional data inputs. Analyze the issues found during the testing to determine the
defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code
review plan, identifying the focus of the review. Experienced auditors perform line-by-

line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a
timely manner. The code owners should actively cooperate (this may include providing
the latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely
manner for both the audit team and the code owner.

6/23

This report has been commissioned by with the objective of identifying any
potential issues and vulnerabilities within the source code of the repository,
as well as in the repository dependencies that are not part of an officially recognized library.
In this audit, we have employed the following techniques to identify potential vulnerabilities
and security issues:

A comprehensive analysis of the software’s dependency libraries was conducted using the
dependency check tool.

The code quality was examined using a code scanner.

Based on the fuzz tool and by writing harnesses.

Manually reading and analyzing code to uncover vulnerabilities and enhance overall quality.

During the audit, we identified 9 issues of varying severity, listed below.

ID Title Severity Status

AUT-7 Password Exposure Due to Major Fixed
Residual Memory Retention

IND-3 Dependency Security Issues Informational Fixed

IND-9 Redux DevTools Potentially Informational Fixed
Enabled in Production

7/23

MAI-6

QPU-1

SEN-4

WPR-8

QPU-11

IND1-10

External Links Opened Without
Validation

Limited-Length Random Request ID
Introduces Collision Possibility

Inconsistent handling of decimal
amounts in send and deposit

transactions

Potential Leakage of Sensitive
Information via Console Logging

Insecure Random Number
Generation

Missing Content Security Policy
(CSP) in Main HTML Entry

8/23

Informational

Minor

Minor

Informational

Medium

Informational

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Here are the relevant actors with their respective abilities within the

repository :

The flowchart for user interactions with ownership wallets using Quantum lock script and
on the CKB is as follows:

PN

FIELIFT
Liser CKB
request -
"?‘ .E
: .
Ut uam lock 5Pt e——
ﬁ
ckb axer
- — — — fesponse— — — — — J—‘
= = = TS PO S = = == = -

|
=

9/23

AUT-7 Password Exposure Due to Residual Memory Retention

Major
Manual Review

Fixed
src/ui/components/authentication/authentication.tsx#92

In the wallet, the user-entered password is not properly cleared from memory after users

have used it once.

This behavior exposes the user’s password to unintended disclosure, significantly increasing
the risk of wallet compromise.

There are 2 types of positions that expose the password

e Password in a javascript string:

<« C @ localhost:3003/#/send

ik [0 Elements Console Sources Network Performance Memory Application Privacy and

@0 L & Summary ~ ¥ Filter byclass All objects

= profiles Constructor
Show 100 before Show all 807 Show 100 after
Heap snapshots b "Dx1230%7 8123857612345 6" @B0115 O

Snapshot 1 (311 MB) 895 O

e Password in a "Detached <input>"

10/23

veal-srp

i [0 Elements Console Sources Metwork Performance Memory Application Privacy and security Lighthouse
@ @ r 4 é. Summary * ¥ Filter by class All objects -

—) Constructar
= Profiles S

w» Detached =input placeholder="Enter your password" id="password" aria-reguired="
Heap snapshots

p» [15] :: Detached <input placeholder="Enter your password" id="password" aria-
Snapshot 1 (342 MB) » [11] ! input#password.ant-input.ant-input-lg.c..

» [12] ! currentCSSZoom: 1 'r ant-input-affix—-wrapper

» [13] :: » dataset: DOMStringMap {} 7953 X

» _ proti defaultChecked: false

defaultValue: "Dx1234%"E+1234%"5+1234%

» [10] = dir: "o

p _value' dirName: " B761471

» [16] :1 disabled: false

It's recommended to fill the password string with 0 after using it.

This issue has been fixed in "https://github.com/tea2x/quantum-purse/pull/93". The client

use a "uint8array" to store and clean password, and use a "HTML <intput>"tag to avoid

React caching mechanism.

11/23

https://github.com/tea2x/quantum-purse/pull/93

IND-3 Dependency Security Issues

Informational
Dependency Check

Fixed

src/ui/store/index.ts#1

The project currently depends on several packages with known security vulnerabilities:

e glob 10.2.0 - 10.4.5: Command injection via -c/--cmd in CLI(high) - GHSA-5j98-mcp5-
4vw2

e js-yaml 4.0.0 - 4.1.0: Prototype pollution in merge (moderate) - GHSA-mh29-5h37-
fv8m

e node-forge <=1.3.1: Multiple ASN.1 parsing vulnerabilities (high) - GHSA-554w-wpv2-
vw27, GHSA-65ch-62r8-g69g, GHSA-5gfm-wpxj-wjgq

e tar7.5.1: Race condition potentially exposing uninitialized memory (moderate) -
GHSA-29xp-3729-xgph

It is recommended to update these dependencies to fix versions.

This issue has been fixed. The client has adopted our suggestions.

12/23

https://github.com/advisories/GHSA-5j98-mcp5-4vw2
https://github.com/advisories/GHSA-5j98-mcp5-4vw2
https://github.com/advisories/GHSA-mh29-5h37-fv8m
https://github.com/advisories/GHSA-mh29-5h37-fv8m
https://github.com/advisories/GHSA-554w-wpv2-vw27
https://github.com/advisories/GHSA-554w-wpv2-vw27
https://github.com/advisories/GHSA-65ch-62r8-g69g
https://github.com/advisories/GHSA-5gfm-wpxj-wjgq
https://github.com/advisories/GHSA-29xp-372q-xqph

IND-9 Redux DevTools Potentially Enabled in Production

Informational
Manual Review

Fixed

src/ui/store/index.ts#11

The Redux store is initialized without explicitly configuring DevTools options, which may
result in Redux DevTools being available in production builds. This can expose the full
application state, including wallet-related data, to anyone with access to Electron DevTools.

src/ui/store/index.ts :

export const store = init<RootModel, FullModel>({
models,
plugins: [
loadingPlugin({

asNumber: false,

If Redux DevTools is enabled in production, an attacker (or any user) can:

1. Open Electron DevTools
2. Switch to the Redux tab

3. Inspect the entire state tree, for example:

{

wallet: {
accounts: [...]

13/23

current: {...},
syncStatus: {...},

}
}

They may also perform time-travel debugging and export the state, which increases the risk

of sensitive information leakage and can assist in further attacks.

It's recommended to ensure that in production builds Redux DevTools is disabled and

cannot connect to the application state.

This issue has been fixed. The client has adopted our suggestions in the

7992b68c89fd3351664c26253333a7638921ebfa commit.

14/23

MAI-6 External Links Opened Without Validation

Informational
Manual Review

Fixed

main.js#43

The Electron main process setWindowOpenHandler directly calls shell.openExternal for all
URLs without protocol or domain validation, allowing arbitrary URLs to be opened.

main.js :

mainWindow.webContents.setWindowOpenHandler(({ url }) => {

shell.openExternal(url);

3,

Attack Requirements
There should be a XSS flaw in the app to exploit this issue.
Possibale Attack

Malicious code can open local files using file:// protocol (e.g., file:///etc/passwd)

Only allow https: and http: protocols, explicitly block file: , javascript: , and other

dangerous protocols.

This issue has been fixed. The client has adopted our suggestions in the

0f5408382ab05b0ed19d894b526fd0a2ceb4371d commit.

15/23

QPU-1 Limited-Length Random Request ID Introduces
Collision Possibility

Minor
Manual Review

Fixed

src/core/quantum_purse.ts#93

The function sendRequestToWorker generates requestld values using
Math.random().toString(36).substring(7) , which typically produces a 7-character string
composed of digits and lowercase letters. While the single-instance collision probability is
low, the limited entropy increases the chance of collisions over long-running sessions or

high request volumes.

It is recommended to ues more collision-resistant method, such as using UUID, or

alternatively increasing the length of the generated identifier.

This issue has been fixed. The client has adopted our suggestions.

16/23

SEN-4 Inconsistent handling of decimal amounts in send and
deposit transactions

Minor
Manual Review

Fixed

src/ui/pages/Send/Send.tsx#255

Currently, in the wallet, the input for send and deposit transactions only accepts integer
values. If a user inputs a decimal value, it triggers an error during conversion to Bigint .
However, when isSendMax is setto true , the wallet supports transactions with decimal
units. This behavior creates an inconsistency in the handling of decimal amounts across

different transaction modes.

Standardize the input handling for decimal amounts across all transaction types.

This issue has been fixed. The client has adopted our suggestions.

17/23

WPR-8 Potential Leakage of Sensitive Information via Console
Logging

Informational
Manual Review

Fixed

webpack/webpack.prod.js#1

The application contains multiple console.log and console.error statements that remain
active in production builds. These logs may expose internal error objects, application state,
or other sensitive operational details to users or to log collectors.

Examples include logging internal errors and scanner error messages:

console.error("Failed to start light client:", error);

console.log(errorMessage);

In a production Electron environment, such logs can be viewed via DevTools, captured by
external log aggregation systems, or included in crash reports. This increases the risk that
stack traces, internal configuration, or runtime state are exposed, which can help attackers
understand the application’s internal design, identify other weaknesses, or access

potentially sensitive information included in error messages.

It's recommended to configure the production build to strip console calls.

18/23

This issue has been fixed. The client has adopted our suggestions in the

151f5a4a903b6fa18c97f19defa3cc2f7d1300fe commit.

19/23

QPU-11 Insecure Random Number Generation

Medium
Manual Review

Fixed

src/core/quantum_purse.ts#93;

public/status.worker.js#7

private sendRequestToWorker(command: string): Promise<any> {
if ('this.worker) throw new Error("Worker not initialized");
return new Promise((resolve, reject) => {
const requestld = Math.random().toString(36).substring(7);

this.pendingRequests.set(requestld, { resolve, reject });
this.worker!.postMessage({ command, requestid });
ok
}

The requestld inthe code is generated using Math.random() . This random number
generation scheme lacks cryptographic security and carries a probability of generating two
identical requestld values consecutively. This can cause original messages to be

overwritten, leading to a series of functional issues.

Use a more secure random number generation algorithm.

Developer reply Itis used for the communication of a status updater cron job. Not the

wallet seed.

20/23

IND1-10 Missing Content Security Policy (CSP) in Main HTML
Entry

Informational
Manual Review

Fixed

public/index.ntml#7

The main HTML entry file does not define any Content Security Policy (CSP). Without CSP, the
application lacks a strong client-side defense layer against cross-site scripting (XSS), injection

of untrusted scripts, and unauthorized resource loading. public/index.html :

<! >
<html lang="en">
<head>
<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Quantum Purse</title>

</head>

It's recommended to add a restrictive CSP meta tag.

This issue has been fixed. The client has adopted our suggestions in

0f5408382ab05b0ed19d894b526fd0a2ceb4371d commit.

21/23

Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive
information or assets at risk, and often are not directly exploitable. All major issues
should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information or assets at risk. All critical issues should be fixed.

Fixed: The issue has been resolved.
Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

22/23

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

23/23

	1059_page1.pdf
	1059_page2.pdf

