
Audit Report

Mon Dec 04 2023

contact@scalebit.xyz https://twitter.com/scalebit_

RentFun

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/18

RentFun Audit Report

1 Executive Summary

1.1 Project Information

Description First NFT Rental Protocol for arbitrum Games.

Type Lending

Auditors ScaleBit

Timeline Wed Nov 15 2023 - Mon Dec 04 2023

Languages Solidity

Platform Arbitrum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/RentFun/summer

Commits ba4ff43a7827562ac9d82da7384fcd87596550f4
21f24c9ea1e3718c0823cc23171952d9e3a634d7
47c0ad141870fd55504ac8e3c7f31125f01814bd

https://github.com/RentFun/summer
https://github.com/RentFun/summer/tree/ba4ff43a7827562ac9d82da7384fcd87596550f4
https://github.com/RentFun/summer/tree/21f24c9ea1e3718c0823cc23171952d9e3a634d7
https://github.com/RentFun/summer/tree/47c0ad141870fd55504ac8e3c7f31125f01814bd

2/18

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

RFU contracts/RentFun/RentFun.sol ebe76595391f77afee48c4bd64eae
183300fc775

IRF contracts/RentFun/interfaces/IRent
Fun.sol

b9cfbf4e3722be9e413b5a6ac63a6
1bf35cee681

IVA contracts/RentFun/interfaces/IVaul
t.sol

1ccf3c31de5b5a41350198346bedc
d851b707455

IVM contracts/RentFun/interfaces/IVaul
tManager.sol

e5fef1de3449a244e68ad54373754
974c367ba71

RFH contracts/RentFun/RentFunHelper.
sol

d5b1c6720c7ea0b1e350e5304bc7
3b37b580a5fb

VMA contracts/RentFun/VaultManager.s
ol

011d9a0a4b45f69f610972567dd46
1545b88ef64

VAU contracts/RentFun/Vault.sol 410cae0a799b84afe2a43a4197d79
da897e26ec6

NFT contracts/Token/NFToken.sol 0777951e9a406c3b71812fcef674fa
06448a7601

WBI contracts/Token/WonderBird.sol af73a42aac23a38ac2f966d7848c5
439266b7c76

RTO contracts/Token/RentToken.sol a1707643567a98eca7a85dcd3f6ab
739e7eec294

3/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 9 4 5

Informational 0 0 0

Minor 2 2 0

Medium 4 0 4

Major 3 2 1

Critical 0 0 0

4/18

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

5/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/18

2 Summary

This report has been commissioned by RentFun to identify any potential issues and
vulnerabilities in the source code of the RentFun smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 9 issues of varying severity, listed below.

ID Title Severity Status

RFH-1 Use abi.encode instead of
abi.encodePacked

Minor Fixed

RFU-1 rent Function Can Be Front-run Major Fixed

RFU-2 lend Function Design Issues Major Acknowledged

RFU-3 Token Can Be Rented Multiple
Times

Major Fixed

RFU-4 Missing Check On collection
address

Medium Acknowledged

RFU-5 RentFun Contract May Have
ptnFee Remaining

Medium Acknowledged

RFU-6 Initialize Could Be Front-Run Medium Acknowledged

VMA-1 Initialize Issue Medium Acknowledged

VMA-2 Missing Events For Important
Parameter Updates

Minor Fixed

7/18

3 Participant Process

Here are the relevant actors with their respective abilities within the RentFun Smart
Contract:
Admin

The admin can set the max vault of user can create by calling the setMaxVaultNum()

function.

The admin can set the Rentfun address setRentfun() function.

The admin has the authority to call the setCommission and setVipCommission

functions to set commission_ and vipCommission_ .

The admin has the ability to invoke the setPartner function to set Partner .

The admin has the capability to invoke the setTreasure function to change

setTreasure addresses.

The admin has the capability to invoke the setVaultManager function to change

vaultManager addresses.

The admin has the capability to invoke the setWonderBird function to change

wonderBird addresses.

User

Users can invoke the create function to create a new vault.

Users can call removeVault function to remove the vault of user.

Users have the option to call the transferERC721 function to transfer NFT to vault.

Users can use the transferERC20 function to transfer ERC20 token to vault.

Users can invoke the transferETH function to transfer ETH to vault.

Users can use the lend function to lend a token.

Users can use the rent function to rent a token.

Lender can call claimRentFee to get the fee of lend bid .

8/18

4 Findings

RFH-1 Use abi.encode instead of abi.encodePacked

Severity: Minor

Status: Fixed

Code Location:

contracts/RentFun/RentFunHelper.sol#133-144

Descriptions:

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash collisions

(e.g. abi.encodePacked(0x123,0x456) => 0x123456 => abi.encodePacked(0x1,0x23456) ,

but abi.encode(0x123,0x456) => 0x0...1230...456). Unless there is a compelling reason,

abi.encode should be preferred.

Suggestion:

It is recommended to use abi.encode as preferred.

Resolution:

The client followed the suggestion and fixed this issue.

9/18

RFU-1 rent Function Can Be Front-run

Severity: Major

Status: Fixed

Code Location:

contracts/RentFun/RentFun.sol#71

Descriptions:

The rent() function has a known race condition that can lead to token theft. If a renter calls

the rent function a second time, the lender can front-run the transaction and call lend()

again to modify the lend bid and raise the bid fee, while the transaction of receive will still be

packed, so this will result in the loss of the renter's token.

Suggestion:

It is recommended to add a parameter to limit the maximum number of tokens a renter can

pay. This will help prevent users from losing funds from front-running attacks.

Resolution:

The client followed the suggestion and fixed this issue.

10/18

RFU-2 lend Function Design Issues

Severity: Major

Status: Acknowledged

Code Location:

contracts/RentFun/RentFun.sol#70

Descriptions:

The lend function allows the owner of the tokenID to rent out his nft and set the rental

fee, then the bid information and in basic information of the token will be recorded in the

lendTokens and lendBids . However, lend does not judge whether the token is already in

the state of renting when lender call lend , which means that the owner can call the lend

function again to modify the information of lend, such as modifying the maxEndTime of the

token (in addition to the tokenHash).

Suggestion:

It is recommended to determine the state of the corresponding tokenHash before lend.

Resolution:

According to the protocol design lend can be called multiple times by the owner of the

token to modify the relevant bid information.

11/18

RFU-3 Token Can Be Rented Multiple Times

Severity: Major

Status: Fixed

Code Location:

contracts/RentFun/RentFun.sol#99

Descriptions:

After the lender calls the lend function, other users can call the rent and pay the

corresponding fee to rent the token, but the rent function does not check the state of the

token corresponding to the current tokenHash and whether it has been rented out or not,

so it will result that a token can be rented out more than once.

Suggestion:

It is recommended to add a state check of the tokenHash corresponding to the token in

the rent function.

Resolution:

The client followed the suggestion and fixed this issue.

12/18

RFU-4 Missing Check On collection address

Severity: Medium

Status: Acknowledged

Code Location:

contracts/RentFun/RentFun.sol#71

Descriptions:

Due to the lack of checking of the collection address, the lender can pass in any collection

address when calling the lend function, and it is possible that the collection is an invalid

address or a dangerous contract address, which may result in an unknown risk.

Suggestion:

It is recommended to take relevant methods to limit the collection address to fix the issue.

Resolution:

The client replied that there are no restrictions on collections at this time, and restrictions

on collection addresses may be added in the future.

13/18

RFU-5 RentFun Contract May Have ptnFee Remaining

Severity: Medium

Status: Acknowledged

Code Location:

contracts/RentFun/RentFun.sol#158

Descriptions:

When the claimRentFee function is called by the lender, it will distribute part of the rental

fee to the protocol, and part of this fee will be given to the partners. But if the receiver

address of the partners is 0, and the share is not set to 0, the claimRentFee function will

not do anything with this part of this fee, and the token will be locked in the RentFun

contract.

Suggestion:

It is recommended to make sure that when adding a partner address, when receiver is set

to 0, share is 0 as well.

Resolution:

Setting initialized to true prevents the user from invoking the rentfun contract directly,

but instead interacts with it through a proxy contract.

14/18

RFU-6 Initialize Could Be Front-Run

Severity: Medium

Status: Acknowledged

Code Location:

contracts/RentFun/RentFun.sol#64;

contracts/RentFun/VaultManager.sol#28

Descriptions:

In the contract, by calling the initialize function to initialize the contracts, there is a

potential issue that malicious attackers preemptively call the initialize function to initialize

and there is no access control verification for the initialize functions.

Suggestion:

It is suggested that the initialize function can be called in the same transaction immediately

after the contract is created to avoid being maliciously called by the attacker.

Resolution:

The client replied that the deployed contract and initialize will be called in one transaction.

15/18

VMA-1 Initialize Issue

Severity: Medium

Status: Acknowledged

Code Location:

contracts/RentFun/VaultManager.sol#25;

contracts/RentFun/RentFunHelper.sol#40;

contracts/RentFun/RentFun.sol#61

Descriptions:

VaultManager , RentFunHelper and RentFun contracts are deployed with the constructor

setting the value of initialized to true, which can cause the admin to fail when initializing the

contract to set global variables.

Suggestion:

It is recommended to modify the constructor so that the contract can be initialized correctly.

16/18

VMA-2 Missing Events For Important Parameter Updates

Severity: Minor

Status: Fixed

Code Location:

contracts/RentFun/VaultManager.sol#56-60

Descriptions:

We found that when important parameters are updated in the project, the function doesn't

emit the update event, so we suggest emitting the event in time, so to notify the user or

chain off programs.

Suggestion:

It is recommended to emit the corresponding event in time when updating the important

parameter.

Resolution:

The client followed the suggestion and fixed this issue.

17/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

18/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	189_page1.pdf
	189_page2.pdf

