
Audit Report

Mon Mar 25 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Satoshi Protocol

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Satoshi Protocol Audit Report

1 Executive Summary

1.1 Project Information

Description The Satoshi Protocol aims to provide a cornerstone for DeFi
and make BTC truly spendable in daily usage by offering a
CDP-style stablecoin.

Type DeFi

Auditors ScaleBit

Timeline Sun Feb 25 2024 - Mon Mar 25 2024

Languages Solidity

Platform BEVM

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Satoshi-Protocol/satoshi-core

Commits 17b598ea88f0057078dfb0e477785842ca1d6a2b
58831110505073f3053dbbfa6b8bf8c621b9320e

1/16

https://github.com/Satoshi-Protocol/satoshi-core
https://github.com/Satoshi-Protocol/satoshi-core/tree/17b598ea88f0057078dfb0e477785842ca1d6a2b
https://github.com/Satoshi-Protocol/satoshi-core/tree/58831110505073f3053dbbfa6b8bf8c621b9320e

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

CIS src/OSHI/CommunityIssuance.sol 3ee03f5405d20ffc7ce1bd3541bb8
ba68f3a7424

OSHIT src/OSHI/OSHIToken.sol 1d0853b3281b1f71d23e346e7fa72
7e1bdca4f1e

RES src/OSHI/Reserve.sol 324e14c950e20215c18a8e413290f
d8a67dfd598

IVE1 src/OSHI/InvestorVesting.sol 5bd0f18cb6c56e80fa2f5f7f1b35b8
b2d073824c

VMA src/OSHI/VestingManager.sol a55b0978dbb21e4e883cbf877b46
23323ff5a389

RMA1 src/OSHI/RewardManager.sol a9f7249744a2b4deef361fc752eb3
64397e69d06

VES src/OSHI/Vesting.sol c7d7ea1ad93e6f4bd4e5e3e6e93d
74462391fdaa

CIS src/OSHI/CommunityIssuance.sol 58890bf91d934293324db6473a6e
2b7d32512371

RES src/OSHI/Reserve.sol ccca89af68f16fe6f8fb903b59f4f99
60560fdb8

OSHIT src/OSHI/OSHIToken.sol 4e57420eacd6306ea510517d5b39
7eb284470bbb

RMA1 src/OSHI/RewardManager.sol ca02b51815b014a23251061f90502
25aa09573ff

2/16

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 5 1

Informational 0 0 0

Minor 4 4 0

Medium 2 1 1

Major 0 0 0

Critical 0 0 0

3/16

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/16

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/16

2 Summary

This report has been commissioned by Satoshi Protocol to identify any potential issues and
vulnerabilities in the source code of the Satoshi Protocol smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

OSH-1 Signature Malleability Medium Fixed

RES-1 Immutable Parameters Minor Fixed

RES-2 Unused Variable Minor Fixed

RMA-1 Same Collateral Token May Causes
Error

Medium Acknowledged

RMA-2 Use Memory Variables Instead of
Storage Variables

Minor Fixed

RMA-3 The Length of The
registerTroveManager Can be Too

Long

Minor Fixed

6/16

3 Participant Process

Here are the relevant actors with their respective abilities within the Satoshi Protocol Smart
Contract :
Admin

admin can create a new instance through deployNewInstance .

admin can set the reward rate through setRewardRate .

admin can set the minNetDebt through setMinNetDebt .

admin can set the collateral through configureCollateral .

admin can set the troveManager useable through enableTroveManager .

admin can set the priceFeed through setPriceFeed .

admin can set the fee receiver through setFeeReceiver .

admin can set the guardian through setGuardian .

admin can set the reward manager through setRewardManager .

admin can change the paused parameter through setPaused .

admin can transfer ownership through commitTransferOwnership .

admin can revoke transfer ownership through revokeTransferOwnership .

admin can start the sunset through startSunset .

admin can change the rewardRate through setRewardRate .

admin can start sunsetting collateral through startCollateralSunset .

admin can set the time when the OSHI claim starts through setClaimStartTime .

admin can change the maxTimeThreshold through updateMaxTimeThreshold .

User

user can go to flash loan through flashLoan .

user can approve others to use tokens through approve .

user can send collateral to a trove through addColl .

user can withdraw collateral through withdrawColl .

7/16

user can withdraw debt tokens from a trove through withdrawDebt .

user can repay Debt tokens to a Trove through repayDebt .

8/16

4 Findings

OSH-1 Signature Malleability

Severity: Medium

Status: Fixed

Code Location:

src/OSHI/OSHIToken.sol#86

Descriptions:

The elliptic curve used in Ethereum for signatures is symmetrical, hence for every v,r,s

there exists another v,r,s that returns the same valid result. Therefore two valid signatures

exist which allows attackers to compute a valid signature without knowing the signer's

private key. ecrecover() is vulnerable to signature malleability [1, 2] so it can be dangerous

to use it directly. An attacker can compute another corresponding v,r,s that will make this

check pass due to the symmetrical nature of the elliptic curve.

Suggestion:

It is recommended to use OpenZeppelin’s ECDSA.sol library and reading the comments

above ECDSA's tryRecover() function provides very useful information on correctly

implementing signature checks to prevent signature malleability vulnerabilities. When using

OpenZeppelin's ECDSA library, special care must be taken to use version 4.7.3 or greater,

since previous versions contained a signature malleability bug.

Resolution:

The client has used the ECDSA library to resolve this issue.

9/16

https://www.youtube.com/watch?v=V3TJLDHZBFU&ab_channel=OwenThurm
https://www.youtube.com/watch?v=V3TJLDHZBFU&ab_channel=OwenThurm
https://swcregistry.io/docs/SWC-117/
https://swcregistry.io/docs/SWC-121/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol

RES-1 Immutable Parameters

Severity: Minor

Status: Fixed

Code Location:

src/OSHI/Reserve.sol#26,27

Descriptions:

The _totalAmount and _eachPeriodReleasedAmount parameter is defined in the contract.

This parameter will only be initialized in the constructor and will not be changed

subsequently.

Suggestion:

It is recommended to change this parameter to an immutable type.

Resolution:

The client added the immutable keyword to solve this issue.

10/16

RES-2 Unused Variable

Severity: Minor

Status: Fixed

Code Location:

src/OSHI/Reserve.sol#24

Descriptions:

The _1_MILLION variable is only assigned a value when it is defined and has no subsequent

use.

Suggestion:

It is recommended to confirm whether this design conforms to the design concept. If not

needed, you can remove it.

Resolution:

The client has deleted unused variables.

11/16

RMA-1 Same Collateral Token May Causes Error

Severity: Medium

Status: Acknowledged

Code Location:

src/OSHI/RewardManager.sol#273-282

Descriptions:

The registerTroveManager function is used to register TroveManager information. The

collTokenIndex array obtains the F_COLL and collForFeeReceiver data corresponding to

TroveManager through the collateralToken address. However, if two TroveManagers use

the same collateral token when the second TroveManager is registered, the first one will

be overwritten, information of a TroveManager , so that all the data of the first

TroveManager is reset to zero, including F_COLL and collForFeeReceiver . This seems

unreasonable, and the contract does not restrict different TroveManagers from using the

same collateral token.

Suggestion:

It is recommended to confirm whether this conflicts with the design concept.

Resolution:

The client says there won't be two trove managers with the same collateral.

12/16

RMA-2 Use Memory Variables Instead of Storage Variables

Severity: Minor

Status: Fixed

Code Location:

src/OSHI/RewardManager.sol#229,284,331,373

Descriptions:

In some for loops of the contract, comparisons such as i < collToken.length are used. The

collToken here is a storage variable, which consumes a lot of gas.

Suggestion:

It is recommended to store the storage variable as a memory variable and then read it.

Resolution:

The client has already modified this issue based on our suggestions.

13/16

RMA-3 The Length of The registerTroveManager Can be Too
Long

Severity: Minor

Status: Fixed

Code Location:

src/OSHI/RewardManager.sol#283-291

Descriptions:

The removeTroveManager function uses the delete keyword to clear the data at a certain

position in the registeredTroveManagers array. The delete keyword will only reset the

data to 0 and will not delete the position. The registerTroveManager function uses the

push operator to add array elements, which will cause the array to get longer and longer,

and there are many unavailable positions in the array. In some functions, the

registeredTroveManagers array will be looped, consuming a lot of gas. If the array length is

too long, it will even cause the call to fail.

Suggestion:

It is recommended to exchange the data to be removed with the end data and pop it out.

Resolution:

The client uses mapping to solve this issue.

14/16

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

15/16

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

16/16

	281_page1.pdf
	281_page2.pdf

