
Audit Report

Tue Apr 30 2024

contact@scalebit.xyz https://twitter.com/scalebit_

SolidLizard Lending

https://twitter.com/scalebit_
https://www.scalebit.xyz/

SolidLizard Lending Audit Report

1 Executive Summary

1.1 Project Information

Description SolidLizard lending is a highly scalable decentralized lending
protocol powered by Arbitrum.

Type Lending

Auditors ScaleBit

Timeline Mon Apr 22 2024 - Tue Apr 30 2024

Languages Solidity

Platform Arbitrum

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/SolidLizard/lend-Staking
https://github.com/SolidLizard/SL-lend-contracts

Commits https://github.com/SolidLizard/lend-Staking:

c33a47380c2710b042b04446762a42e908ed5039

https://github.com/SolidLizard/SL-lend-contracts:

0c4c4fc720e9bc3ca8128d41d74a2b669b7d736c

1/15

https://github.com/SolidLizard/lend-Staking
https://github.com/SolidLizard/SL-lend-contracts
https://github.com/SolidLizard/lend-Staking/tree/c33a47380c2710b042b04446762a42e908ed5039
https://github.com/SolidLizard/SL-lend-contracts/tree/0c4c4fc720e9bc3ca8128d41d74a2b669b7d736c

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ICL contracts/interfaces/IClaimable.sol 6aaf87beeb34d15f943f348efbab1
20ff8bc736b

CE2 contracts/CErc20.sol cc29cfee71b2d80b65e79dd65c6a9
60dc5d8e096

RDI contracts/RewardDistributor.sol 2ea3e2fb6bc29c21ab1f8fc9752240
f5f90b5fd3

CE2U contracts/CErc20Upgradable.sol 5a621653a967d9190c15f2a5bcc0f
cc3805ff02b

CTI contracts/CTokenInterfaces.sol 9d0e4c03e1056424ba9db662163d
6024d066d2a4

ERE contracts/ErrorReporter.sol 0fa8ca1cb6b7ac10f15349dc20cc6
61571c3585e

CIN contracts/ComptrollerInterface.sol 62917396c9b7179f6a73fdd1e6cc2
30adbc5d58b

UNI contracts/Unitroller.sol 720c40892523a3c6f58bdb3461a23
963e7b969ad

CST contracts/ComptrollerStorage.sol 9bd23be2f93eea76d8daf6193a076
50ddb88f670

IRM contracts/InterestRateModel.sol 0ff4dda8c2d430452caf0b62028ba
93d55d9de15

JRMV4 contracts/JumpRateModelV4.sol de7031804f839321e06c24db1ccff
6df6865d11c

2/15

UPO contracts/PriceOracle/UniswapPric
eOracle.sol

91897e1db2e8e411f6fdcc646dd7e
c8226af5ee6

SPO contracts/PriceOracle/SimplePrice
Oracle.sol

11780ffc4b8a6b6f49aaa61ef50168
85974252f0

CPO contracts/PriceOracle/ChainlinkPric
eOracle.sol

093e8fd0c2ef60f38980ff9034e6ca
7abead7dd2

WPO contracts/PriceOracle/WitnetPrice
Oracle.sol

0009b161955934821a464a025435
7e2493bcec84

CE2I contracts/CErc20Immutable.sol 66843e7b0d51bef4439a0f54a79d9
956702e070c

POR contracts/PriceOracle.sol ca58bd9b259ee222a8842cf289fbb
de396732888

COM contracts/Comptroller.sol 10a41beeb807a410b39d83af9ba2
c7da4d21d089

ENE contracts/ExponentialNoError.sol 5b1bfa0f01c6642e2c850f45e47c97
ecdc015e03

LIN contracts/interfaces/LendingInterfa
ces.sol

e315b583d67c1ec483a0f8dbb721
8a0605dc9f41

LGEDI contracts/interfaces/LGEDepositorI
nterfaces.sol

cdb94cc6ee829354f98453f020b39
50060b1505a

VIN contracts/interfaces/VelocoreInterf
aces.sol

c6d89826d234991c624f99a446f68
ea395121d45

RMA contracts/interfaces/RewardManag
er.sol

eb6199ca8c17c5dd470545b0e377
6fffcc5b5c76

RHV3 contracts/RewardHolderV3.sol 5eec0ff2ef4ea14fddb656a8e60bd
09d1f446e3c

3/15

RHO contracts/RewardHolder.sol 99508d5ce0f51955ed3e138c47222
13779e061ca

SDI contracts/StakedDistributor.sol 57feb6d25fd3158a59f818c802e3b
cf59cccc8d6

ODI contracts/OwnedDistributor.sol 8b3b394bdbebfc960660af25b2c85
1094262287b

RHV2 contracts/RewardHolderV2.sol 1d158b955e8eed7e4b09cb330f5df
a80c07116ae

RHV4 contracts/RewardHolderV4.sol 343589c0d15543c1e0b39b1ec81d
0b78f94fef5d

RMA1 contracts/RewardManager.sol 613d7d5796056f87ea303c4850177
4838ec7c817

RMA2 contracts/ReserveManager.sol 2110921f8c1f7f944ef234a8df56eca
4ad035074

DIS contracts/Distributor.sol 514bce5fdf0f0c03ebc62ce10bd2b
b5f7564c9e0

FUN contracts/funds/Fund.sol dddfa7e0fceb0a4c30134e8c8dfb9
0378ba390fd

SSAMF contracts/funds/ScalesStakingAnd
MiningFund.sol

1b9d5e71064ac29ad053a617f583
52dbfd533043

SDF contracts/funds/ScalesDevFund.sol f0d9fdee4b4f6154f124ec246a6d09
ff19c86150

STF contracts/funds/ScalesTreasuryFun
d.sol

4d08bd6efa94614886f28bb59a5d
38c0487a9ecf

TCO contracts/TimelockController.sol 3b1a0bd54940ca89ecd6e6eac4ee
d471ef048bb4

4/15

CTO contracts/CToken.sol 6b79c047d7b86615355e3252759c
2515461cbffa

SLLTC contracts/SLLendTimelockControlle
r.sol

98121f11cabc7053113935bc2ec25
828023af2ee

SCA contracts/Token/Scales.sol 4defbf11ff4e45b8181b8cdebe712f
7061c7bb93

XSC contracts/Token/XScales.sol ac4586cee585ce177a1f0cc035e12
4f9adc224c9

PPO contracts/PriceOracle/PythPriceOr
acle.sol

0f9f970c8151c0ddc50c6ec40412fc
0cc928cce5

MPO contracts/PriceOracle/MixedPriceO
racle.sol

40434719fba2d96758c7a7dab2fad
47db91115bc

MPOWWE
TH

contracts/PriceOracle/MixedPriceO
racleWithWstETH.sol

a6c2ab61f6520511074f692bdc93a
0b52b9a956d

MPOWWE
TH2

contracts/PriceOracle/MixedPriceO
racleWithWstETHv2.sol

e7726e59cb0bb8f0ca134a5b09d8
8eb1acae8764

5/15

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 1 2

Informational 0 0 0

Minor 2 1 1

Medium 1 0 1

Major 0 0 0

Critical 0 0 0

6/15

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

7/15

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

8/15

2 Summary

This report has been commissioned by SolidLizard to identify any potential issues and
vulnerabilities in the source code of the SolidLizard Lending smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

RHV-1 Incompatible With Deflationary
Token

Medium Acknowledged

RHV-2 Code Optimization Minor Fixed

XSC-1 Redundant Checking Minor Acknowledged

9/15

3 Participant Process

Here are the relevant actors with their respective abilities within the SolidLizard Lending
Smart Contract :
Admin

Admin can create a add reward tokens through _whitelistToken() .

Admin can set reward holder where can be claimed through _setClaimable() .

Admin can set the guy who can claim through _setRecipient() .

Admin can set the admin , reservesManager_ of LiquidityGenerator through

_setAdmin() .

Recipient

Recipient can claim reward coins through RewardHolder.claim() .

User

User can update the reward shareIndex through updateShareIndex() .

User can get their stake coins through mint() .

User can get their underlying coins through burn() .

User can withdraw their underlying coins through withdraw() .

User can deposit their token to get reward through deposit() .

User can get reward tokens through claim() .

10/15

4 Findings

RHV-1 Incompatible With Deflationary Token

Severity: Medium

Status: Acknowledged

Code Location:

contracts/RewardHolderV2.sol#59;

contracts/RewardHolderV3.sol#62;

contracts/RewardHolderV4.sol#62

Descriptions:

In the addRewards function, due to the unknown address of the token , when the token is

deflationary, the number of tokens transferred to the contract by the user may not be

accurate.

Suggestion:

Since it's not known exactly what type of token this is, it's recommended to confirm whether

such a question would conflict with the design philosophy.

Resolution:

The client said that they will be mindful of this. Currently, they have no plans to introduce

deflationary rewards to their staking and LP Mining contracts.

11/15

RHV-2 Code Optimization

Severity: Minor

Status: Fixed

Code Location:

contracts/RewardHolderV2.sol#60,61;

contracts/RewardHolderV3.sol#63,64;

contracts/RewardHolderV4.sol#63,64

Descriptions:

In the addRewards function, the incoming token parameter was originally of type address,

and it's a redundant step to convert the token to address again when you use it.

Suggestion:

It is recommended to fix it.

Resolution:

The client will update the contract to incorporate this optimization.

12/15

XSC-1 Redundant Checking

Severity: Minor

Status: Acknowledged

Code Location:

contracts/Token/XScales.sol#108

Descriptions:

The lockedAmount parameter is of type uint256 and will always be greater than or equal to

0.

Suggestion:

It is recommended to delete the check.

Resolution:

The client acknowledged that this check is redundant. However, for security reasons, the

xScales contract is not upgradeable, so they will retain this check.

13/15

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

14/15

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

15/15

	337_page1.pdf
	337_page2.pdf

