
Audit Report

Tue Dec 31 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Taker Chain

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Taker Chain Audit Report

1 Executive Summary

1.1 Project Information

Description Taker chain is built on the Substrate framework, utilizing the
Nominated Proof-of-Liquidity mechanism to combine the
nomination and voting system of NPOS with the liquidity
incentives of POL to achieve a robust consensus mechanism

Type DeFi

Auditors ScaleBit

Timeline Fri Dec 20 2024 - Tue Dec 31 2024

Languages Solidity

Platform Taker

Methods Dependency Check, Fuzzing, Static Analysis, Manual Review

Source Code https://github.com/takerprotocol/token-controller

Commits f1e6ebc3f194b0aa5fae26956410185903702da3
ca03675907dcb5842c003c4b18ef3335594d004a
86ed6c7ec1b42bd38c7871eaca43ff02f83f28d8

1/13

https://github.com/takerprotocol/token-controller
https://github.com/takerprotocol/token-controller/tree/f1e6ebc3f194b0aa5fae26956410185903702da3
https://github.com/takerprotocol/token-controller/tree/ca03675907dcb5842c003c4b18ef3335594d004a
https://github.com/takerprotocol/token-controller/tree/86ed6c7ec1b42bd38c7871eaca43ff02f83f28d8

1.2 Files in Scope

The following are the directories of the original reviewed files.

Directory

https://github.com/takerprotocol/taker-node/pallets/precompiles

https://github.com/takerprotocol/taker-node/pallets/asset-currency

2/13

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 2 0

Informational 0 0 0

Minor 1 1 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/13

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Integer overflow/underflow

Infinite Loop

Infinite Recursion

Race Condition

Traditional Web Vulnerabilities

Memory Exhaustion Attack

Disk Space Exhaustion Attack

Side-channel Attack

Denial of Service

Replay Attacks

Double-spending Attack

Eclipse Attack

Sybil Attack

Eavesdropping Attack

Business Logic Issues

Contract Virtual Machine Vulnerabilities

Coding Style Issues

4/13

1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis",
"Fuzz Testing", and "Manual Review" to conduct a comprehensive security test on the
code in a manner closest to real attacks. The main entry points and scope of the security
testing are specified in the "Files in Scope", which can be expanded beyond the scope
according to actual testing needs. The main types of this security audit include:

(1) Dependency Check

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

(2) Automated Static Code Analysis

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

(3) Fuzz Testing

A large amount of randomly generated data was inputted into the software to try and trigger
potential errors and exceptional paths.

(4) Manual Review

The scope of the code is explained in section 1.2.

(5) Audit Process

Clarify the scope, objectives, and key requirements of the audit.

Collect related materials such as software documentation, architecture diagrams, and

lists of dependency libraries to provide background information for the audit.

Use automated tools to generate a list of the software's dependency libraries and

employ professional tools to scan these libraries for security vulnerabilities, identifying

outdated or known vulnerable dependencies.

Select and configure automated static analysis tools suitable for the project, perform

automated scans to identify security vulnerabilities, non-standard coding, and

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

5/13

Design a series of fuzz testing cases aimed at testing the software's ability to handle

exceptional data inputs. Analyze the issues found during the testing to determine the

defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code

review plan, identifying the focus of the review. Experienced auditors perform line-by-

line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a

timely manner. The code owners should actively cooperate (this may include providing

the latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely

manner for both the audit team and the code owner.

6/13

2 Summary

This report has been commissioned by Taker Controller with the objective of identifying any
potential issues and vulnerabilities within the source code of the Taker Chain repository, as
well as in the repository dependencies that are not part of an officially recognized library. In
this audit, we have employed the following techniques to identify potential vulnerabilities
and security issues:

(1) Dependency Check

A comprehensive analysis of the software’s dependency libraries was conducted using the
dependency check tool.

(2) Automated Static Code Analysis

The code quality was examined using a code scanner.

(3) Manual Code Review

The primary focus of the manual code review was:

takerprotocol/taker-node

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

LIB-1 Potential Imbalance Due to
Saturating Subtraction in
taker_mint_to Function

Medium Fixed

LIB-2 Missing Validation for Zero Amount
in taker_mint_to Function

Minor Fixed

7/13

https://github.com/takerprotocol/taker-node

3 Participant Process

Here are the relevant actors with their respective abilities within the Taker Chain repository :
Admin

set_controller : Allows the root account to assign a new controller to the list of token

controllers.

transfer_whitelist_admin : Transfers the whitelist admin privileges to a new account.

update_whitelist : Adds or removes accounts from the whitelist based on the provided

add flag.

User

taker_mint_to : Allows a controller to mint specific tokens to a specified account.

taker_burn : Allows a controller to burn tokens from a specified account.

native_mint_to : Allows a controller to mint native currency to a specified account.

transfer : Allows a whitelisted account to transfer tokens to another account.

8/13

4 Findings

LIB-1 Potential Imbalance Due to Saturating Subtraction in
taker_mint_to Function

Severity: Medium

Discovery Methods: Manual Review

Status: Fixed

Code Location:

pallets/asset-currency/src/lib.rs#321

Descriptions:

 pub fn pub fn taker_mint_totaker_mint_to((
 originorigin:: OriginForOriginFor<<TT>>,,
 amountamount:: TT::::BalanceBalance,,
 to_accountto_account:: TT::::AccountIdAccountId,,
)) -->> DispatchResultWithPostInfoDispatchResultWithPostInfo {{
 letlet sendersender:: <<TT asas ConfigConfig>>::::AccountIdAccountId == ensure_signedensure_signed((originorigin))??;;
 ensureensure!!((TokenControllersTokenControllers::::<<TT>>::::getget(())..containscontains((&&sendersender)),, ErrorError::::<<TT>>::::NotControllerNotController));;
 AccountAccount::::<<TT>>::::mutatemutate((&&SelfSelf::::account_idaccount_id(()),, ||accountaccount|| account account..freefree ==
accountaccount..freefree..saturating_subsaturating_sub((amountamount))));;
 AccountAccount::::<<TT>>::::mutatemutate((&&to_accountto_account,, ||accountaccount|| account account..freefree ==
accountaccount..freefree..saturating_addsaturating_add((amountamount))));;
 OkOk(((())..intointo(())))
 }}

The taker_mint_to function uses the saturating_sub method to subtract the amount from

the account.free balance. If account.free is insufficienamount, the subtraction will result

in zero without causing an error, but the to_account.free balance will still be incremented

by the full amount, creating an imbalance in the system's token accounting.

Suggestion:

Ensures the pallet’s account has sufficient funds before proceeding with the transfer. This

ensures that the operation fails gracefully if the balance is insufficient.

Resolution:

9/13

This issue has been fixed. The client has adopted our suggestions.

10/13

LIB-2 Missing Validation for Zero Amount in taker_mint_to
Function

Severity: Minor

Discovery Methods: Manual Review

Status: Fixed

Code Location:

pallets/asset-currency/src/lib.rs#316

Descriptions:

 ##[[palletpallet::::weightweight((00))]]
 ##[[transactionaltransactional]]
 pub fn pub fn taker_mint_totaker_mint_to((
 originorigin:: OriginForOriginFor<<TT>>,,
 amountamount:: TT::::BalanceBalance,,
 to_accountto_account:: TT::::AccountIdAccountId,,
)) -->> DispatchResultWithPostInfoDispatchResultWithPostInfo {{
 letlet sendersender:: <<TT asas ConfigConfig>>::::AccountIdAccountId == ensure_signedensure_signed((originorigin))??;;
 ensureensure!!((TokenControllersTokenControllers::::<<TT>>::::getget(())..containscontains((&&sendersender)),, ErrorError::::<<TT>>::::NotControllerNotController));;
 AccountAccount::::<<TT>>::::mutatemutate((&&SelfSelf::::account_idaccount_id(()),, ||accountaccount|| account account..freefree ==
accountaccount..freefree..saturating_subsaturating_sub((amountamount))));;
 AccountAccount::::<<TT>>::::mutatemutate((&&to_accountto_account,, ||accountaccount|| account account..freefree ==
accountaccount..freefree..saturating_addsaturating_add((amountamount))));;
 OkOk(((())..intointo(())))
 }}

The taker_mint_to function does not include a validation check to ensure that the amount

parameter is greater than zero.

Suggestion:

Add a validation check for the amount parameter to ensure it is greater than zero.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/13

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information or assets at risk, and often are not directly exploitable. All major issues

should be fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information or assets at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

12/13

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

13/13

	656_page1.pdf
	656_page2.pdf

