
Audit Report

Tue Dec 31 2024

contact@bitslab.xyz https://twitter.com/scalebit_

Taker Controller

https://twitter.com/scalebit_
https://www.scalebit.xyz/

Taker Controller Audit Report

1 Executive Summary

1.1 Project Information

Description Taker Controller is the asset management, exchange
management and veTaker management in the taker protocol

Type DeFi

Auditors ScaleBit

Timeline Fri Dec 20 2024 - Tue Dec 31 2024

Languages Solidity

Platform Taker

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/takerprotocol/token-controller

Commits f1e6ebc3f194b0aa5fae26956410185903702da3
ca03675907dcb5842c003c4b18ef3335594d004a
86ed6c7ec1b42bd38c7871eaca43ff02f83f28d8

1/14

https://github.com/takerprotocol/token-controller
https://github.com/takerprotocol/token-controller/tree/f1e6ebc3f194b0aa5fae26956410185903702da3
https://github.com/takerprotocol/token-controller/tree/ca03675907dcb5842c003c4b18ef3335594d004a
https://github.com/takerprotocol/token-controller/tree/86ed6c7ec1b42bd38c7871eaca43ff02f83f28d8

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ECO contracts/ExchangeController.sol 1a6f5f1ba422f7ab2ac5f66b8c39b4
de920b39f1

PAU contracts/Pausable.sol 797c4e2b42bc55869b4db094d1b7
b7e54338f0ae

VET contracts/VETaker.sol 9a491a86ab998a4a679e8de48bc0
d178f84a7fa7

PAD contracts/PrecompiledAdapter.sol 0e774acdd4fde30ebcc67120f2c09
ddf14003a8f

AMA contracts/AssetsManager.sol 9763c0a812b536a2c222444ec866
2e5aa45e8d50

2/14

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 3 0

Informational 0 0 0

Minor 2 2 0

Medium 0 0 0

Major 1 1 0

Critical 0 0 0

3/14

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

4/14

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/14

2 Summary

This report has been commissioned by Taker Controller to identify any potential issues and
vulnerabilities in the source code of the Taker Controller smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

AMA-1 Lack of Events Emit Minor Fixed

AMA-2 Lack of Reentrancy Protection Minor Fixed

PAD-1 Lack of Permission Control Major Fixed

6/14

3 Participant Process

Here are the relevant actors with their respective abilities within the Taker Controller Smart
Contract :
Admin

Admin can set tToken , vToken , tGas , tStaking , tGasRatio , isMulRatio .

Admin can set live through the toggleLive function.

Admin can add or remove whiteList .

Minter

Minter can mint or burn VETaker .

User

User can use exchangeVToTToken , exchangeTToVToken ,

exchangeTgasFromTToken , exchangeTgasFromVToken functions to exchange

tokens.

User can use claimTToken to exchange tokens tToken to vToken .

User can use stakingWithNominate to exchange tokens vToken to tToken and call

bondAndNominate remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondExtra remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondExtraAndNominate remotely through tStaking .

User can use stakingExtra to exchange tokens vToken to tToken and call

bondAndValidate remotely through tStaking .

User can use stakingExtra to exchange tokens vToken for tToken and remotely call

bondExtraAndValidate through tStaking .

User can use burnT/mintT/mintTGas functions to call the burn/mintTo interface of

ITToken and ITgas .

7/14

4 Findings

AMA-1 Lack of Events Emit

Severity: Minor

Status: Fixed

Code Location:

contracts/AssetsManager.sol#46

Descriptions:

The contract lacks appropriate events for some key functions such

as: setTToken() , setVToken() , setTgas() , setTStaking() , setTgasRatio() . The lack of event

records for these functions may cause inconvenience in the subsequent tracking and

contract status changes.

Suggestion:

It is recommended to emit events for the functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

8/14

AMA-2 Lack of Reentrancy Protection

Severity: Minor

Status: Fixed

Code Location:

contracts/AssetsManager.sol

Descriptions:

In the _exchangeVToTToken function, the burn operation is executed before mint, and the

burn method may trigger the callback function of the token. If the burn method of _vToken

supports the callback mechanism, the attacker can call exchangeVToTToken again in the

callback function, thereby repeatedly triggering the mintT operation, causing the system to

be abused to mint tokens.

Attack flow as:

1. The attacker calls exchangeVToTToken and provides an initial _amount.

2. In the callback of burn, the attacker calls exchangeVToTToken again, resulting in

repeated minting of tokens.

3. The attacker mints more tokens than his actual assets through multiple nested calls.

functionfunction exchangeVToTTokenexchangeVToTToken((uint256 _amountuint256 _amount)) publicpublic onlyWhenLive onlyWhenLive {{
 _exchangeVToTToken_exchangeVToTToken((vTokenvToken,, tToken tToken,, _amount _amount));;
}}

functionfunction _exchangeVToTToken_exchangeVToTToken((
 address _vTokenaddress _vToken,,
 address _tTokenaddress _tToken,,
 uint256 _amountuint256 _amount
)) internal internal {{
 requirerequire((
 _amount _amount <=<= IERC20IERC20((_vToken_vToken))..balanceOfbalanceOf((msgmsg..sendersender)),,
 "Insufficient VToken balance""Insufficient VToken balance"
));;
 IVETakerIVETaker((_vToken_vToken))..burnburn((msgmsg..sendersender,, _amount _amount));;

 mintTmintT((_tToken_tToken,, msg msg..sendersender,, _amount _amount));;

9/14

 emit emit ExchangeVToTExchangeVToT((msgmsg..sendersender,, _amount _amount));;
}}

Suggestion:

It is recommended to add a decorator to prevent reentrancy and use the official library

nonReentrant . Since the mock contract is BRC20 and the intended design is BRC20, errors

will occur when using tokens with callbacks, such as ERC1155 standard tokens.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/14

PAD-1 Lack of Permission Control

Severity: Major

Status: Fixed

Code Location:

contracts/PrecompiledAdapter.sol#11

Descriptions:

Functions lack permission control. In the PrecompiledAdapter contract, burnT() , mintT ,

and mintTGas can be called arbitrarily.

 functionfunction burnTburnT((address _tTokenaddress _tToken,, address _addr address _addr,, uint256 _amount uint256 _amount)) publicpublic {{
 ITTokenITToken((_tToken_tToken))..burnburn((_addr_addr,, _amount _amount));;
 }}

 functionfunction mintTmintT((address _tTokenaddress _tToken,, address _to address _to,, uint256 _amount uint256 _amount)) publicpublic {{
 ITTokenITToken((_tToken_tToken))..mintTomintTo((_to_to,, _amount _amount));;
 }}

 functionfunction mintTGasmintTGas((address _tGasaddress _tGas,, address _to address _to,, uint256 _amount uint256 _amount)) publicpublic {{
 ITgasITgas((_tGas_tGas))..mintTomintTo((_to_to,, _amount _amount));;
 }}

On the other hand, the token address of the function can be passed in arbitrarily, which

means that the user can arbitrarily manipulate the address called by the

PrecompiledAdapter contract.

Finally, the caller is checked. In the node, caller==msg.sender is checked. That is, msg.sender

is the adapter contract, which means that the public function does not check the user's

permissions.

Suggestion:

It is recommended to add permission control, for example, onlyOwner or onlyNode or

change to internal call.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/14

12/14

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

13/14

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

14/14

	665_page1.pdf
	665_page2.pdf

