
Audit Report

Wed Nov 29 2023

contact@scalebit.xyz https://twitter.com/scalebit_

Zomma Protocol

https://twitter.com/scalebit_
https://www.scalebit.xyz/

1/46

Zomma Protocol Audit Report

1 Executive Summary

1.1 Project Information

Description Options on chain with the highest capital efficiency

Type Options

Auditors ScaleBit

Timeline Mon Aug 21 2023 - Wed Nov 29 2023

Languages Solidity

Platform zkSync Era

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/zomma-protocol/zomma-contracts-
hardhat

Commits a912c068e4f7aeefd8630b7a9b1b2edf77d1013a
d467085e33e89dae75bd049eac2a712add78e627
9b97f36afea05b3244dfca535b0ebad3fd08da43
af931ef38d75686d64d47705174145924c93d4be
42daf8bdbcb7edbdfdbb910a2029110e0f033133

https://github.com/zomma-protocol/zomma-contracts-hardhat
https://github.com/zomma-protocol/zomma-contracts-hardhat
https://github.com/zomma-protocol/zomma-contracts-hardhat/tree/a912c068e4f7aeefd8630b7a9b1b2edf77d1013a
https://github.com/zomma-protocol/zomma-contracts-hardhat/tree/d467085e33e89dae75bd049eac2a712add78e627
https://github.com/zomma-protocol/zomma-contracts-hardhat/tree/9b97f36afea05b3244dfca535b0ebad3fd08da43
https://github.com/zomma-protocol/zomma-contracts-hardhat/tree/af931ef38d75686d64d47705174145924c93d4be
https://github.com/zomma-protocol/zomma-contracts-hardhat/tree/42daf8bdbcb7edbdfdbb910a2029110e0f033133

2/46

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

OMA contracts/OptionMarket.sol 8ffc0ea575979026e7a1e1bdcb813
3208cf77389

SDM contracts/libraries/SafeDecimalMat
h.sol

1bdd6b5a622597d57f5ed7fb8d65
71ff4963f9a0

SSDM contracts/libraries/SignedSafeDeci
malMath.sol

b074e5b3a91b5861a54af036dbe6
5f2f6567c09d

LED contracts/Ledger.sol 926466bc994e3707d9fc791bf61f9
1a41b15a051

TIM contracts/utils/Timestamp.sol 735665e83cfb44199527b9f348c7b
2d150488252

VPR contracts/VaultPricer.sol 511e579f3abc9a32349ddd99783d
3fbd6a294dc9

OPR contracts/option-pricer/OptionPric
er.sol

1938817618f816c5f96a18ba272bb
759b0435c80

SOP contracts/option-pricer/SignedOpti
onPricer.sol

51aa1dcdf8b7818652105fcecebbb
da82b376861

ICH contracts/interfaces/IChainlink.sol 6e4350e888fbeab5d50af514d54d
bc70af5b51bf

IVA contracts/interfaces/IVault.sol c1d2ca360aa4054e77e56c0ec12e2
4451687d7be

IOP contracts/interfaces/IOptionPricer.
sol

20d8d0dc0fcb5772a609dd6f52021
8e8397b1318

3/46

SPO contracts/signed/pools/SignedPoo
l.sol

3ce71459012a43b0ed91509bf569
1e08b4a53e30

SVA contracts/signed/SignedVault.sol 69129ce20c4be981c15999a56776
6520203064b7

PTO contracts/pools/PoolToken.sol 705e6f408483d915b7c2aa8e006d
5b1bf95d9fa9

VAU contracts/Vault.sol c8ade9b9f20399ce0fd2fd9c114af1
fd8231d050

SVA contracts/SignatureValidator.sol 2c1fbdd25efa6488e35a97d29cef9
bdc551d1df2

RDI contracts/RewardDistributor.sol b48b1e16f6506f55d0d22209dfdac
929275b99f7

SSP contracts/signed/SignedSpotPricer.
sol

831a114ee9dfaca895774365a4f2fe
faa1019593

SPR contracts/SpotPricer.sol 03e41bce3a819fb98324c6eadbbf0
86fe1f31653

CON contracts/Config.sol c1c3cbb1f943711d42e9a49613559
4c40afc16e5

POO contracts/pools/Pool.sol 541097869cae3ab09f0a917b7df5e
93ef4c29684

POW contracts/pools/PoolOwner.sol 91a9000d73ef9047d5f68637baf36
4b391a096ac

VOW contracts/VaultOwner.sol c94aa2819835865306aa1caecd10
a332e8f30b69

4/46

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 29 23 6

Informational 0 0 0

Minor 14 12 2

Medium 2 2 0

Major 13 9 4

Critical 0 0 0

5/46

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

6/46

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

7/46

2 Summary

This report has been commissioned by Zomma Protocol to identify any potential issues and
vulnerabilities in the source code of the Zomma Protocol smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 29 issues of varying severity, listed below.

ID Title Severity Status

CON-1 The removePool() Function can be
Front-Run to Prevent the Owner
From Removing a Pool

Major Fixed

CON-2 Hacked Owner or Malicious Owner
can Steal Assets on the Platform

Major Acknowledged

CON-3 Optimizing Pool Removal Process
in the removePool() Function

Minor Acknowledged

CON-4 Functions Guaranteed To Revert
When Called By Normal Users Can
be Marked Payable

Minor Fixed

CON-5 Splitting require() Statements
That Use && Saves Gas

Minor Fixed

CON-6 Using Bools for Storage Incurs
Overhead

Minor Fixed

CON-7 Use Custom Errors Minor Fixed

CON-8 Don't Initialize Variables with
Default Value

Minor Fixed

8/46

CON-9 Use Assembly To Check For
Address(0)

Minor Acknowledged

ISP-1 latestRoundData May Return Stale
or Incorrect Price

Major Fixed

LED-1 For Operations That will not
Overflow, You could Use
Unchecked

Minor Fixed

PFA-1 Re-org Attack in Factory Major Fixed

PFA-2 Use Calldata Instead of Memory for
Function Arguments That Do not
Get Mutated

Minor Fixed

POO-1 SafeApprove Deprecated Medium Fixed

SDM-1 Using Private rather than Public for
Constants, Saves Gas

Minor Fixed

SET-1 Cache Array Length Outside of
Loop

Minor Fixed

SPR-1 Use of Deprecated Chainlink API Major Fixed

SPR-2 getRoundData Does Not Check
For The Freshness of The answer

Major Fixed

SPR-3 Use != 0 instead of > 0 for
Unsigned Integer Comparison

Minor Fixed

SVA-1 Signature Malleability Major Fixed

SVA-2 Signature Replay Attack Major Fixed

SVA-3 Use Fixed Compiler Version Medium Fixed

VAU-1 Insufficient Circle USDC Liquidity
for User Withdrawals After Bridged

Major Acknowledged

9/46

USDC Conversion

VAU-2 Single-step Ownership Transfer
Can be Dangerous

Major Acknowledged

VAU-3 Loss of Precision Caused by
Division Followed by Multiplication

Major Acknowledged

VAU-4 Missing Deadline Checks Allow
Pending Transactions To be
Maliciously Executed

Major Fixed

VAU-5 ++i Costs Less Gas than i++ ,
especially When It's Used in For-
loops (--i / i-- too)

Minor Fixed

VAU-6 Use Shift Right/Left instead of
Division/Multiplication if Possible

Minor Fixed

VOW-1 Missing Approve After setQuote Major Fixed

10/46

3 Participant Process

Here are the relevant actors with their respective abilities within the Zomma Protocol Smart
Contract:
Admin

The admin can refresh the market quote by calling the refreshQuote() function.

The admin can set the reserve rate through the setReservedRate() function.

The admin is able to set the ZLM rate using the setZlmRate() function.

The admin has the privilege to set the bonus rate via the setBonusRate() function.

The admin can set the withdrawal fee rate using the setWithdrawFeeRate() function.

The admin can set the free withdrawable rate through the setFreeWithdrawableRate()

function.

The admin can extract ERC20 tokens from the pool by calling withdrawToken , and can

also withdraw ETH by calling withdraw .

The admin has the capability to set crucial parameters such as InitialMarginRiskRate ,

LiquidateRate , ClearRate , and others in the config contract.

The admin can invoke the setPoolPaused function to establish the paused status of

the pool.

The admin has the authority to call the addPool and removePool functions to add or

remove pools, respectively.

The admin has the ability to invoke the setIv function to set the IV (Implied Volatility).

The admin can utilize the setTradeDisabled and setExpiryDisabled functions to

configure the disabled status of trading and expiry, respectively.

The admin has the capability to invoke the setAddresses function to change contract

addresses.

User

Users can invoke the deposit function to deposit funds and receive corresponding

shares.

Users can utilize the withdrawBySignature function to extract a specific quantity of

shares by providing a signature.

11/46

Users have the option to call the withdraw function to burn shares and withdraw

funds.

Users can use the trade function to execute batch trades.

Users can invoke the settle function to settle all positions associated with the account

and expiry.

Users can use the liquidate function to liquidate a position.

Users have the ability to call the clear function to clear an account.

12/46

4 Findings

CON-1 The removePool() Function can be Front-Run to
Prevent the Owner From Removing a Pool

Severity: Major

Status: Fixed

Code Location:

contracts/Config.sol#217-232

Descriptions:

The vault.removePool() is designed to remove a specified pool from a list of pools, provided

the contract owner calls it. Inside the function, it checks whether the specified pool has any

associated expiries listed in the vault. If the length of the list of expiries for the given pool is

not zero, it throws an error message. If a bad actor monitors transactions in the mempool

and purchases an option before owner calls the removePool() fucntion, this check will fail.

functionfunction removePoolremovePool((addressaddress pool pool)) externalexternal onlyOwner onlyOwner {{
 requirerequire((vaultvault..listOfExpirieslistOfExpiries((poolpool))..length length ==== 00,, "position not empty""position not empty"));;
 requirerequire((poolAddedpoolAdded[[poolpool]],, "pool not found""pool not found"));;
 uintuint length length == pools pools..lengthlength;;

Suggestion:

It is recommended to consider temporarily disabling the pool before proceeding with its

removal.

Resolution:

This issue has been fixed. The client has followed the suggestion.

13/46

CON-2 Hacked Owner or Malicious Owner can Steal Assets on
the Platform

Severity: Major

Status: Acknowledged

Code Location:

contracts/Config.sol#182,188

Descriptions:

Having a single EOA as the only owner of contracts is a large centralization risk and a single

point of failure. A single private key may be taken in a hack, or the sole holder of the key may

become unable to retrieve the key when necessary. Consider changing to a multi-signature

setup, or having a role-based authorization model.

Suggestion:

It is recommended to consider changing to a multi-signature setup, or having a role-based

authorization model.

14/46

CON-3 Optimizing Pool Removal Process in the
removePool() Function

Severity: Minor

Status: Acknowledged

Code Location:

contracts/Config.sol#217-232

Descriptions:

The function removePool() can be optimized by enhancing the process when pools[i] is

equal to pool . Instead of iterating through the loop, it could directly swap pools[I] with the

last element pools[length-1] and then reduce the length of the array by one using pop() .

This can be achieved more efficiently.

 forfor ((uintuint i i == 00;; i i << length length;; i i++++)) {{
 ifif ((foundfound)) {{
 poolspools[[i i -- 11]] == pools pools[[ii]];;
 }} elseelse ifif ((poolspools[[ii]] ==== pool pool)) {{
 found found == truetrue;;
 }}
 }}
 poolspools..poppop(());;
 poolAddedpoolAdded[[poolpool]] == falsefalse;;

Suggestion:

It is recommended to implement the solution as follows:

 forfor ((uintuint i i == 00;; i i << length length;; i i++++)) {{
 ifif ((poolspools[[ii]] ==== pool pool)) {{
 poolspools[[ii]] == pools pools[[length length -- 11]];; // Swap with the last element// Swap with the last element
 poolspools..poppop(());; // Reduce the array length by one// Reduce the array length by one
 poolAddedpoolAdded[[poolpool]] == falsefalse;;
 emitemit RemovePoolRemovePool((poolpool));;
 returnreturn;; // Exit the function after performing the swap and pop// Exit the function after performing the swap and pop
 }}
 }}

15/46

CON-4 Functions Guaranteed To Revert When Called By
Normal Users Can be Marked Payable

Severity: Minor

Status: Fixed

Code Location:

contracts/Config.sol#L99

Descriptions:

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries

to pay the function. Marking the function as payable will lower the gas cost for legitimate

callers because the compiler will not include checks for whether a payment was provided.

The extra opcodes avoided are

CALLVALUE(2),DUP1(3),ISZERO(3),PUSH2(3),JUMPI(10),PUSH1(3),DUP1(3),REVERT(0),JUMPDEST(1),PO

which costs an average of about 21 gas per call to the function, in addition to the extra

deployment cost.

Suggestion:

It is recommend that functions guaranteed to revert when called by normal users can be

marked payable.

Resolution:

This issue has been fixed. The client has followed the suggestion.

16/46

CON-5 Splitting require() Statements That Use && Saves Gas

Severity: Minor

Status: Fixed

Code Location:

contracts/Config.sol#L106

Descriptions:

Instead of using operator && on single require check. Using double require check can save

more gas,there is a larger deployment gas cost, but with enough runtime calls, the change

ends up being cheaper by 3 gas.

Suggestion:

It is recommended to implement the following example.

 requirerequire((_liquidateRate _liquidateRate <=<= MAX_LIQUIDATE_RATE MAX_LIQUIDATE_RATE ,, "exceed the limit""exceed the limit"));;
 requirerequire((clearRate clearRate <=<= _liquidateRate _liquidateRate,, "exceed the limit""exceed the limit"));;

Resolution:

This issue has been fixed. The client has used this method to optimize.

17/46

CON-6 Using Bools for Storage Incurs Overhead

Severity: Minor

Status: Fixed

Code Location:

contracts/Config.sol#31,32;

contracts/Ledger.sol#23

Descriptions:

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas), and to

avoid Gsset (20000 gas) when changing from false to true , after having been true in the

past. See source.

mappingmapping((addressaddress =>=> boolbool)) publicpublic poolAdded poolAdded;;
mappingmapping((addressaddress =>=> boolbool)) publicpublic poolEnabled poolEnabled;;
mappingmapping((addressaddress =>=> mappingmapping((uintuint =>=> mappingmapping((uintuint =>=> mappingmapping((boolbool =>=> Position Position))))))))
internalinternal accountPositions accountPositions;;

Suggestion:

It is recommended to use uint256(1) and uint256(2) for true/false.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/58f635312aa21f947cae5f8578638a85aa2519f5/contracts/security/ReentrancyGuard.sol#L23-L27

18/46

CON-7 Use Custom Errors

Severity: Minor

Status: Fixed

Code Location:

contracts/Config.sol#100,106,112,118,134,142,148,154

Descriptions:

Instead of using error strings, to reduce deployment and runtime cost, you should use

Custom Errors. This would save both deployment and runtime cost.Source

requirerequire((_initialMarginRiskRate _initialMarginRiskRate <=<= MAX_INITIAL_MARGIN_RISK_RATE MAX_INITIAL_MARGIN_RISK_RATE,, "exceed the limit""exceed the limit"));;
requirerequire((_liquidateRate _liquidateRate <=<= MAX_LIQUIDATE_RATE MAX_LIQUIDATE_RATE &&&& clearRate clearRate <=<= _liquidateRate _liquidateRate,, "exceed"exceed
the limit"the limit"));;

Suggestion:

It is recommed to use Custom Errors.

requirerequire((_initialMarginRiskRate _initialMarginRiskRate <=<= MAX_INITIAL_MARGIN_RISK_RATE MAX_INITIAL_MARGIN_RISK_RATE,, "ETL""ETL"));;

Resolution:

This issue has been fixed. The client has followed the suggestion.

https://soliditylang.org/blog/2021/04/21/custom-errors/

19/46

CON-8 Don't Initialize Variables with Default Value

Severity: Minor

Status: Fixed

Code Location:

contracts/Config.sol#221,222;

contracts/Ledger.sol#54,116,128

Descriptions:

Uninitialized variables are assigned with the types default value. Explicitly initializing a

variable with it's default value costs unnecessary gas.

boolbool found found == falsefalse;;
forfor ((uintuint i i == 00;; i i << length length;; i i++++)) {{

Suggestion:

It is recommended not to use default values to initialize variables.

Resolution:

This issue has been fixed. The client has followed the suggestion.

20/46

CON-9 Use Assembly To Check For Address(0)

Severity: Minor

Status: Acknowledged

Code Location:

contracts/Config.sol#L189

Descriptions:

Saves 6 gas per instance if using assembly to check for address(0).

Suggestion:

It is recommended to use assembly to check for address(0).

assembly {assembly {
 if iszero(_addr) {if iszero(_addr) {
 mstore(0x00, "zero address")mstore(0x00, "zero address")
 revert(0x00, 0x20)revert(0x00, 0x20)
 }}
}}

21/46

ISP-1 latestRoundData May Return Stale or Incorrect Price

Severity: Major

Status: Fixed

Code Location:

contracts/interim/InterimSpotPricer.sol#55-58

Descriptions:

ChainlinkOracle should use the updatedAt value from the latestRoundData() function to

make sure that the latest answer is recent enough to be used. In the current implementation

of SpotPricer.sol , there is no freshness check. This could lead to stale prices being used.

Moreover, chainlink aggregators have a built-in circuit breaker if the price of an asset goes

outside of a predetermined price band. The result is that if an asset experiences a huge drop

in value (i.e. LUNA crash) the price of the oracle will continue to return the minPrice instead

of the actual price of the asset and vice versa.

 functionfunction getPricegetPrice(()) publicpublic viewview virtual virtual returnsreturns ((uintuint)) {{
 ((,, int256int256 answer answer,, ,, ,,)) == oracle oracle..latestRoundDatalatestRoundData(());;
 returnreturn uintuint((answeranswer)) ** 1010****1818 // 1010****oracleoracle..decimalsdecimals(());;
 }}

Suggestion:

It is recommended to consider using the following checks:

// minPrice check// minPrice check
requirerequire((answer answer >> minPrice minPrice,, "Min price exceeded""Min price exceeded"));;
// maxPrice check// maxPrice check
requirerequire((answer answer << maxPrice maxPrice,, "Max price exceeded""Max price exceeded"));;
requirerequire((blockblock..timestamp timestamp -- updatedAt updatedAt << validPeriod validPeriod,, "freshness check failed.""freshness check failed."))

The validPeriod can be based on the Heartbeat of the feed.

Resolution:

This issue has been fixed. The client has implemented the specified check.

22/46

LED-1 For Operations That will not Overflow, You could Use
Unchecked

Severity: Minor

Status: Fixed

Code Location:

contracts/Ledger.sol#116;

contracts/OptionMarket.sol#58

Descriptions:

For Operations that will not overflow, you could use unchecked

forfor ((uintuint i i == 00;; i i << length length;; i i++++)) {{

Suggestion:

It is recommended to use Solidity's unchecked block to save the overflow checks.

forfor ((uintuint i i;; i i << length length;;)) {{

unchecked unchecked {{ ++++ii;; }}
}}

Resolution:

This issue has been fixed. The client has followed the suggestion.

23/46

PFA-1 Re-org Attack in Factory

Severity: Major

Status: Fixed

Code Location:

contracts/pools/PoolFactory.sol#L21-29

Descriptions:

The contract creates new pools and pooltokens through the clone function from

openzeppelin. The address is determined by the create address derivation, which depends

on the contract nonce. This is a risky approach as re-orgs can occur in all EVM chains. An

attacker could potentially steal funds through a reorg attack if the pool is funded within a

few blocks of being created. Furthermore, the reorg could last for several minutes, providing

ample time to create the pool and transfer funds to that address, especially when using a

script instead of manual operations. Any significant reorg incident creates an opportunity

for users' funds to be stolen. Additionally, the use of a small number of confirmations in user

transactions can lead to a loss of money.

Imagine that Alice creates pool and pool token, and then user deposits assets into the pool.

Bob sees that the network block reorg happens and calls create() . Thus, it creates a pool

and token clone with an address to which user sends funds. Then user’s transactions are

executed and user transfers funds to Bob’s contract.

Here are some examples of block reorganizations:

Ethereum Beacon Chain Blockchain Reorg

Polygon Hit by 157 Block Reorg Despite Hard Fork to Reduce Reorgs

PolygonScan Block 39599624

Suggestion:

It is recommended to use the cloneDeterministic function from openzeppelin to create

pools and pool tokens. This function uses a deterministic computation to derive the address

of the new contract, which can help to prevent potential reorg attacks. By using

cloneDeterministic, the address of the new contract is determined in a predictable manner,

https://decrypt.co/101390/ethereum-beacon-chain-blockchain-reorg
https://protos.com/polygon-hit-by-157-block-reorg-despite-hard-fork-to-reduce-reorgs
https://polygonscan.com/block/39599624/f?hash=0x0b7e6c5e9fbae3e2dbd114e4836b52ffb1211820bf62bbbd3ddf859dd07c0fe1

24/46

reducing the risk of unexpected address changes due to reorgs. This can enhance the

security of the contract and protect users' funds.

Resolution:

This issue has been fixed. The client has already removed the part of the code.

25/46

PFA-2 Use Calldata Instead of Memory for Function Arguments
That Do not Get Mutated

Severity: Minor

Status: Fixed

Code Location:

contracts/pools/PoolFactory.sol#21

Descriptions:

Mark data types as calldata instead of memory where possible. This makes it so that the data

is not automatically loaded into memory. If the data passed into the function does not need

to be changed (like updating values in an array), it can be passed in as calldata. The one

exception to this is if the argument must later be passed into another function that takes an

argument that specifies memory storage.

functionfunction createcreate((addressaddress _vault _vault,, stringstring memorymemory name name,, stringstring memorymemory symbol symbol)) externalexternal
returnsreturns((addressaddress clonedPool clonedPool,, addressaddress clonedPoolToken clonedPoolToken)) {{

Suggestion:

It is recommended to use calldata instead of memory.

Resolution:

This issue has been fixed. The client has followed the suggestion.

26/46

POO-1 SafeApprove Deprecated

Severity: Medium

Status: Fixed

Code Location:

contracts/pools/Pool.sol#L65

Descriptions:

The OpenZeppelin SafeERC20 safeApprove() function has been deprecated, as seen in the

comments of the OpenZeppelin code. Using this deprecated function can lead to unintended

reverts and potentially the locking of funds.

Suggestion:

It is recommended to replace safeApprove() with safeIncreaseAllowance() .

Resolution:

This issue has been fixed. The client has already used safeIncreaseAllowance .

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/828fe365eeff13e7aa188e449005ad81f7222189/contracts/token/ERC20/utils/SafeERC20.sol#L39-L44
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/828fe365eeff13e7aa188e449005ad81f7222189/contracts/token/ERC20/utils/SafeERC20.sol#L39-L44

27/46

SDM-1 Using Private rather than Public for Constants, Saves
Gas

Severity: Minor

Status: Fixed

Code Location:

contracts/libraries/SafeDecimalMath.sol#9,10;

contracts/libraries/SignedSafeDecimalMath.sol#9,10

Descriptions:

If needed, the values can be read from the verified contract source code, or if there are

multiple values there can be a single getter function that returns a tuple of the values of all

currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler not

having to create non-payable getter functions for deployment calldata, not having to store

the bytes of the value outside of where it's used, and not adding another entry to the

method ID table.

uint8uint8 publicpublic constantconstant PRECISION PRECISION == 1818;;
uintuint publicpublic constantconstant UNIT UNIT == 1010****uintuint((PRECISIONPRECISION));;

Suggestion:

It is recommed to use private rather than public for constants.

Resolution:

This issue has been fixed. The client has followed the suggestion.

28/46

SET-1 Cache Array Length Outside of Loop

Severity: Minor

Status: Fixed

Code Location:

contracts/Settler.sol#8;

contracts/Vault.sol#478,485,625,629

Descriptions:

If not cached, the solidity compiler will always read the length of the array during each

iteration. That is, if it is a storage array, this is an extra sload operation (100 additional extra

gas for each iteration except for the first) and if it is a memory array, this is an extra mload

operation (3 additional gas for each iteration except for the first).

 forfor ((uintuint i i == 00;; i i << accounts accounts..lengthlength;; ++++ii)) {{

 forfor ((uintuint i i == 00;; i i << expiries expiries..lengthlength;; ++++ii)) {{

Suggestion:

It is recommended to cache the array length before entering the loop.

Resolution:

This issue has been fixed. The client has followed the suggestion.

29/46

SPR-1 Use of Deprecated Chainlink API

Severity: Major

Status: Fixed

Code Location:

contracts/SpotPricer.sol#L35;

contracts/SpotPricer.sol#L45

Descriptions:

According to Chainlink's documentation, the latestAnswer and getAnswer function is

deprecated. This function might suddenly stop working if Chainlink stop supporting

deprecated APIs. And the old API can return stale data

Suggestion:

It is recommended to switch to latestRoundData() as described here.

Resolution:

This issue has been fixed. The client has already used latestRoundData .

https://docs.chain.link/data-feeds/api-reference

30/46

SPR-2 getRoundData Does Not Check For The Freshness of
The answer

Severity: Major

Status: Fixed

Code Location:

contracts/SpotPricer.sol#38-49

Descriptions:

While the latestRoundData function no longer needs to check for round completeness, the

getRoundData function needs to check for answeredInRoun d and roundId for price

freshness and latestTimestamp for round completeness. answeredInRound is the

combination of aggregatorAnsweredInRound and phaseId .

aggregatorAnsweredInRound : The round the answer was updated in. You can check

answeredInRound against the current roundId . If answeredInRound is less than

roundId , the answer is carried over. Also, you need to validate that the timestamp on that

round is not 0.

 functionfunction settlesettle((uintuint expiry expiry,, uint80uint80 roundId roundId)) externalexternal {{
 ifif ((settledPricessettledPrices[[expiryexpiry]] !=!= 00)) {{
 revertrevert SettledSettled(());;
 }}
 ifif ((!!checkRoundIdcheckRoundId((expiryexpiry,, roundId roundId)))) {{
 revertrevert InvalidRoundIdInvalidRoundId(());;
 }}
 ((,, int256int256 answer answer,, ,, ,,)) == oracle oracle..getRoundDatagetRoundData((roundIdroundId));;
 uintuint price price == uintuint((answeranswer)) ** 1010****1818 // 1010****oracleoracle..decimalsdecimals(());;
 settledPricessettledPrices[[expiryexpiry]] == price price;;
 emitemit SettlePriceSettlePrice((expiryexpiry,, price price,, roundId roundId));;
 }}

Suggestion:

It is recommended to check for price freshness:

requirerequire((answeredInRound answeredInRound ==== roundId roundId,, "the price is not fresh""the price is not fresh"))

31/46

requirerequire((latestTimestamp latestTimestamp >> 00,, "Round not complete""Round not complete"));;

Resolution:

This issue has been fixed. The client has implemented the specified check.

32/46

SPR-3 Use != 0 instead of > 0 for Unsigned Integer
Comparison

Severity: Minor

Status: Fixed

Code Location:

contracts/SpotPricer.sol#52

Descriptions:

When dealing with unsigned integer types, comparisons with != 0 are cheaper than with > 0.

returnreturn timestamp timestamp >> 00 &&&& expiry expiry >=>= timestamp timestamp &&&& expiry expiry << timestamp2 timestamp2;;

Suggestion:

It is recommend to use != 0 instead of > 0 for unsigned integer comparison.

Resolution:

This issue has been fixed. The client has followed the suggestion.

33/46

SVA-1 Signature Malleability

Severity: Major

Status: Fixed

Code Location:

contracts/signed/SignedVault.sol#L73

Descriptions:

The elliptic curve used in Ethereum for signatures is symmetrical, hence for every [v,r,s]

there exists another [v,r,s] that returns the same valid result. Therefore two valid signatures

exist which allows attackers to compute a valid signature without knowing the signer's

private key. ecrecover() is vulnerable to signature malleability [1, 2] so it can be dangerous to

use it directly.An attacker can compute another corresponding [v,r,s] that will make this

check pass due to the symmetrical nature of the elliptic curve.

Suggestion:

It is recommended to use OpenZeppelin’s ECDSA.sol library and reading the comments

above ECDSA's tryRecover() function provides very useful information on correctly

implementing signature checks to prevent signature malleability vulnerabilities. When using

OpenZeppelin's ECDSA library, special care must be taken to use version 4.7.3 or greater,

since previous versions contained a signature malleability bug.

Resolution:

This issue has been fixed. The client has integrated OpenZeppelin's EIP712Upgradeable.

https://www.youtube.com/watch?v=V3TJLDHZBFU&ab_channel=OwenThurm
https://www.youtube.com/watch?v=V3TJLDHZBFU&ab_channel=OwenThurm
https://swcregistry.io/docs/SWC-117/
https://swcregistry.io/docs/SWC-121/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol

34/46

SVA-2 Signature Replay Attack

Severity: Major

Status: Fixed

Code Location:

contracts/signed/SignedVault.sol#L67-100

Descriptions:

The contract does not adhere to EIP-712, exposing a vulnerability to signature replay attacks.

To prevent such attacks, smart contracts must implement the following measures:

Maintain a Nonce:

Smart contracts should keep track of a nonce, a unique number associated with each

transaction or action performed by the contract.

Provide Current Nonce to Signers:

The current nonce should be made available to signers before they generate a signature.

Validate Signature with Nonce:

During signature validation, the contract must verify the signature using the current nonce.

This ensures that the signature is only valid for the specific transaction or action associated

with that nonce.

Store Used Nonces:

Once a nonce has been used, the contract should store this information in storage. This

prevents the same nonce from being used again, effectively rendering replayed signatures

invalid. Incorporate Nonce in Signatures:

Signers are required to include the current nonce when signing their messages. As a result,

signatures that have already been used cannot be replayed, as the corresponding nonce will

be marked as used in storage. An illustrative example of this concept can be found in

OpenZeppelin's ERC20Permit implementation.

functionfunction permitpermit((
 addressaddress owner owner,,
 addressaddress spender spender,,
 uint256uint256 value value,,

35/46

 uint256uint256 deadline deadline,,
 uint8uint8 v v,,
 bytes32bytes32 r r,,
 bytes32bytes32 s s
)) publicpublic virtual override virtual override {{
 // ...// ...
 bytes32bytes32 structHash structHash == keccak256keccak256((abiabi..encodeencode((_PERMIT_TYPEHASH_PERMIT_TYPEHASH,, owner owner,, spender spender,,
valuevalue,, _useNonce_useNonce((ownerowner)),, deadline deadline))));;
 // incorporates chain_id (ref next section Cross Chain Replay)// incorporates chain_id (ref next section Cross Chain Replay)
 bytes32bytes32 hash hash == _hashTypedDataV4_hashTypedDataV4((structHashstructHash));;
 // ...// ...
}}

functionfunction _useNonce_useNonce((addressaddress owner owner)) internalinternal virtual virtual returnsreturns ((uint256uint256 current current)) {{
 CountersCounters..Counter Counter storagestorage nonce nonce == _nonces _nonces[[ownerowner]];;
 current current == nonce nonce..currentcurrent(());;
 noncenonce..incrementincrement(());;
}}

Furthermore, the smart contracts operate across multiple blockchain networks using the

same contract . However, due to the absence of chain-specific verification in the contracts, a

valid signature used on one chain could be replicated by an attacker on another chain. This

would grant the attacker unauthorized access to the same user and contract address.

To mitigate cross-chain signature replay attacks, it is crucial for smart contracts to validate

signatures using the chain_id. Additionally, users must include the chain_id in the message

they sign. This practice ensures that signatures are specific to each chain and cannot be

replayed across different chains, enhancing security and protecting against unauthorized

access.

Suggestion:

It is recommended to implement the methods mentioned in the description approach to

prevent signature replay attacks, further insights can be obtained from Ethereum

Improvement Proposal EIP-712. This EIP provides additional information and guidance on

structuring data encoding, signing, and enhancing the overall security of cryptographic

signatures within smart contracts.

Resolution:

https://eips.ethereum.org/EIPS/eip-712

36/46

This issue has been fixed. The client has added a nonce value and has already integrated

OpenZeppelin's EIP712Upgradeable.

37/46

SVA-3 Use Fixed Compiler Version

Severity: Medium

Status: Fixed

Code Location:

contracts/signed/SignedVault.sol#L2

Descriptions:

All in scope contracts use ^0.8.11 as compiler version.

They should use a fixed version,to make sure the contracts are always compiled with the

intended version. Using versions of Solidity that are not as expected could potentially result

in security issues. This might include the usage of versions with known vulnerabilities, such

as the ones mentioned in the Solidity 0.8.15 release announcement: Solidity 0.8.15 Release

Announcement.

Suggestion:

It is recommended to use fixed and the latest compiler versions.

Resolution:

This issue has been fixed. The client is using a fixed compiler version.

https://soliditylang.org/blog/2022/06/15/solidity-0.8.15-release-announcement/
https://soliditylang.org/blog/2022/06/15/solidity-0.8.15-release-announcement/

38/46

VAU-1 Insufficient Circle USDC Liquidity for User Withdrawals
After Bridged USDC Conversion

Severity: Major

Status: Acknowledged

Code Location:

contracts/Vault.sol#223-241

Descriptions:

In the Vault.withdraw() function, the protocol extracts funds from the configured quote

address in the config and transfers them to the msg.sender address. However, when the

bridged USDC is changed to Circle USDC, user balances remain unchanged, potentially

leading to insufficient Circle USDC in the protocol to support user withdrawals. This results

in the withdraw() function being unable to execute.

 functionfunction transfertransfer((address toaddress to,, uint amount uint amount)) privateprivate {{
 IERC20IERC20((configconfig..quotequote(())))..safeTransfersafeTransfer((toto,, ((amount amount ** 1010****configconfig..quoteDecimalquoteDecimal(()))) // ONEONE));;
 }}

Suggestion:

It is recommended to implement a function that allows only the owner to withdraw funds.

Before changing the bridged USDC to Circle USDC, the vault should be paused.

Subsequently, all bridged USDC funds should be withdrawn, exchanged for Circle USDC, and

then injected back into the vault. This ensures that there is sufficient Circle USDC in the

protocol to support user withdrawals.

Resolution:

The client has confirmed that they will address this issue in the newly deployed contract.

39/46

VAU-2 Single-step Ownership Transfer Can be Dangerous

Severity: Major

Status: Acknowledged

Code Location:

contracts/Vault.sol#130-134

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract.

 functionfunction checkOwnercheckOwner(()) internalinternal viewview {{
 ifif ((msgmsg..sender sender !=!= owner owner)) {{
 revertrevert NotOwnerNotOwner(());;
 }}
 }}

import "@openzeppelin/contracts/access/Ownable.sol";

Below is the official documentation explanation from OpenZeppelin：

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it .

Suggestion:

It is recommended to use a two-step ownership transfer pattern, meaning ownership

transfer gets to a "pending" state and the new owner should claim his new rights, otherwise

the old owner still has control of the contract.

https://docs.openzeppelin.com/contracts/4.x/api/access

40/46

VAU-3 Loss of Precision Caused by Division Followed by
Multiplication

Severity: Major

Status: Acknowledged

Code Location:

contracts/Vault.sol#L287-324

Descriptions:

There is a precision loss issue in the calculations within the following function.

 functionfunction reducePositionreducePosition((addressaddress account account,, intint amountToRemove amountToRemove,, TxCache TxCache memorymemory
txCachetxCache,, PositionInfo PositionInfo memorymemory positionInfo positionInfo,, AccountInfo AccountInfo memorymemory accountInfo accountInfo)) privateprivate
returnsreturns ((intint)) {{
 uintuint rate rate == uintuint((amountToRemoveamountToRemove..decimalDivRounddecimalDivRound((accountInfoaccountInfo..equityequity))));;
 // sold position risk// sold position risk
 uintuint ratedRisk ratedRisk == accountInfo accountInfo..initialMargin initialMargin -- uintuint((--positionInfopositionInfo..sellValuesellValue));;
 uintuint riskDenominator riskDenominator == ratedRisk ratedRisk ++ uintuint((positionInfopositionInfo..buyValuebuyValue));;
 // total risk want to remove// total risk want to remove
 uintuint riskDenominatorToRemove riskDenominatorToRemove == riskDenominator riskDenominator..decimalMuldecimalMul((raterate));;

We can simplify these calculations in order to make the observation clearer:

riskDenominatorToRemoveriskDenominatorToRemove==riskDenominatorriskDenominator**raterate
raterate==amountToRemoveamountToRemove//equityequity

riskDenominatorToRemoveriskDenominatorToRemove==((amountToRemoveamountToRemove//equity）equity）**riskDenominatorriskDenominator

By observing the calculations, we can clearly see the precision loss caused by division

followed by multiplication.

Suggestion:

It is recommended to always maintain the calculation order of multiplication followed by

division.

41/46

VAU-4 Missing Deadline Checks Allow Pending Transactions To
be Maliciously Executed

Severity: Major

Status: Fixed

Code Location:

contracts/Vault.sol#L781;

contracts/pools/Pool.sol#L101;

contracts/pools/Pool.sol#L137

Descriptions:

Lack of control over the deadline parameter during protocol transactions, deposits, or

withdrawals may lead to potential slippage losses or susceptibility to malicious attacks.This

is actually how uniswap implemented the Deadline, this protocol also need deadline check

like this logic. https://github.com/Uniswap/v2-

periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L

The point is the deadline check.

modifiermodifier ensureensure((uintuint deadline deadline)) {{
requirerequire((deadline deadline >=>= block block..timestamptimestamp,, 'UniswapV2Router: EXPIRED''UniswapV2Router: EXPIRED'));;
__;;

}}

The deadline check ensure that the transaction can be executed on time and the expired

transaction revert.

Suggestion:

It is recommended to add a deadline parameter check.

Resolution:

This issue has been fixed. The client has implemented a deadline check.

https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L61
https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L61

42/46

VAU-5 ++i Costs Less Gas than i++ , especially When It's Used
in For-loops (--i / i-- too)

Severity: Minor

Status: Fixed

Code Location:

contracts/Vault.sol#546;

contracts/Ledger.sol#116,128

Descriptions:

++i costs less gas than i++ , especially when it's used in for-loops (--i/i-- too).

forfor ((uintuint i i == 00;; i i << length length;; i i++++)) {{

Suggestion:

It is recommed to use ++i .

Resolution:

This issue has been fixed. The client has followed the suggestion.

43/46

VAU-6 Use Shift Right/Left instead of Division/Multiplication if
Possible

Severity: Minor

Status: Fixed

Code Location:

contracts/Vault.sol#447;

contracts/option-pricer/OptionPricer.sol#69,70,73

Descriptions:

A division/multiplication by any number x being a power of 2 can be calculated by shifting

log2(x) to the right/left.

While the DIV opcode uses 5 gas, the SHR opcode only uses 3 gas. Furthermore, Solidity's

division operation also includes a division-by-0 prevention which is bypassed using shifting.

intint pivot pivot == arr arr[[uintuint((left left ++ ((right right -- left left)) // 22))]]..notionalnotional;;

utilization utilization == ((utilization utilization ++ utilizationAfter utilizationAfter)) // 22;;

Suggestion:

It is recommended to use shift Right/Left instead of division/multiplication.

Resolution:

This issue has been fixed. The client has followed the suggestion.

44/46

VOW-1 Missing Approve After setQuote

Severity: Major

Status: Fixed

Code Location:

contracts/VaultOwner.sol#39-45

Descriptions:

The setQuote function reconfigures the protocol token address and decimal places.

However, after updating the token address, it lacks the necessary approval operation.

Although safeIncreaseAllowance is performed on initialization, this approval becomes

ineffective after updating the quote. It is crucial to reapprove to prevent potential failures in

the crucial transfer of account balances between the vault and pool.

 functionfunction initializeinitialize((address _vaultaddress _vault)) external initializer external initializer {{
 __Ownable_init__Ownable_init(());;
 _setupRole_setupRole((DEFAULT_ADMIN_ROLEDEFAULT_ADMIN_ROLE,, msg msg..sendersender));;
 vault vault == _vault _vault;;
 ConfigConfig config config == VaultVault((_vault_vault))..configconfig(());;
 IERC20IERC20((configconfig..quotequote(())))..safeIncreaseAllowancesafeIncreaseAllowance((_vault_vault,,
0xff0xff));;
 }}

Suggestion:

It is recommended to implement a functionality similar to refreshQuote() in the pool.

Resolution:

This issue has been fixed. The client has added an additional function to approve a new

token.

45/46

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

46/46

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

	194_page1.pdf
	194_page2.pdf

